1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SSSSS [86.1K]
3 years ago
9

Preform the indicated operation. √75 + √12

Mathematics
1 answer:
Nezavi [6.7K]3 years ago
6 0

Answer:

the exact form is 7 \sqrt{3}\\ but the decimal form is 12.124 :)))

Step-by-step explanation:

You might be interested in
PLEASE HELP 50 POINTS
prohojiy [21]

Answer:

12 sales

Step-by-step explanation:

Let x represent the number of sales each man had.

For Salesman A, he earns $65 per sale; this is 65x.

For Salesman B, he earns $40 per sale; this is 40x.  We also add to this his weekly salary of $300; this gives us 40x+300.

Since their pay was equal, set the two expressions equal:

65x = 40x+300

Subtract 40x from each side:

65x-40x = 40x+300-40x

25x = 300

Divide both sides by 25:

25x/25 = 300/25

x = 12

5 0
3 years ago
Read 2 more answers
Fifteen dozen eggs were needed for baking four wedding cakes. The first cake
Mazyrski [523]

Answer:

96 eggs

Step-by-step explanation:

A dozen is equal to 12 eggs, so 15 dozen is equal to 180 eggs

(Because 15*12 = 180)

We already know how many eggs are required for the 1st cake: 12 eggs.

Then it says "each successive cake needs twice as many eggs as the previos cake".

(Successive means the cake directly after the previous cake)

Here's how we find the number of eggs needed for the 2nd cake:

The 1st cake needed 12 eggs, and because the 2nd cake is directly after the 1st cake, we are going to need two times the amount of 12 eggs.

This equation represents the above scenario:

12*2 = 24

So we need 24 eggs for the 2nd cake.

Now we repeat this process for the 3rd cake, finding twice the amount of eggs from the 2nd cake to find the amount of eggs needed for the 3rd cake:

24*2 = 48

And we repeat it once more for the 4th cake, using the eggs from the 3rd cake:

48*2 = 96

So here's the list of how many eggs are required for each of the cakes:

1st cake: 12

2nd cake: 24

3rd cake: 48

4th cake: 96

If you add all the eggs from each of the cakes, you will get 180, which is the number of eggs needed for all four cakes. So our answer is correct.

Hope this helps (●'◡'●)

7 0
3 years ago
Please help and Solve for x.
Serhud [2]

Answer:

tan70 = \frac{opp}{adj}  \\  \:  \:  =  \frac{15}{x }  \\  \\  x =  \frac{15 }{tan70 } \\   \\  =  \frac{15}{2.747}  \\  \\  = 5.46

since 5.46 is equal to 5.5...

I think the answer is the first one

7 0
3 years ago
V(t), left parenthesis, t, right parenthesis models the number of visitors in a park as a function of the outside temperature t
Kruka [31]

Answer:

The number of visitors increases at the same rate over both intervals

Step-by-step explanation:

The unit rate at which the number of visitors in the park increases over a given temperature interval is called the average rate of change, or ARCARCA, R, C.

To find the average rate of change of a function over an interval, we need to take the total change in the function value over the interval and divide it by the length of the interval.

Hint #22 / 3

We are asked to compare the rates at which the number of visitors increases over the interval between an outside temperature of 181818 degrees Celsius and 202020 degrees Celsius, and over the interval between an outside temperature of 202020 degrees Celsius and 272727 degrees Celsius. These correspond to the domain intervals [18,20][18,20]open bracket, 18, comma, 20, close bracket and [20,27][20,27]open bracket, 20, comma, 27, close bracket.

Let's calculate the average rate of change of VVV over those intervals:

ARC_{[18,20]}ARC

[18,20]

​

A, R, C, start subscript, open bracket, 18, comma, 20, close bracket, end subscript ARC_{[20,27]}ARC

[20,27]

​

A, R, C, start subscript, open bracket, 20, comma, 27, close bracket, end subscript

\begin{aligned} \dfrac{V(20)-V(18)}{20-18}&=\dfrac{18-10}{2}\\\\&=\dfrac{8}{2}\\\\&=4\end{aligned}\quad

20−18

V(20)−V(18)

​

​

 

=

2

18−10

​

=

2

8

​

=4

​

 \begin{aligned} \dfrac{V(27)-V(20)}{27-20}&=\dfrac{46-18}{7}\\\\&=\dfrac{28}{7}\\\\&=4\end{aligned}

27−20

V(27)−V(20)

​

​

 

=

7

46−18

​

=

7

28

​

=4

​

Hint #33 / 3

The average rate of change over the interval [18,20][18,20]open bracket, 18, comma, 20, close bracket is the same as the average rate of change over the interval [20,27][20,27]open bracket, 20, comma, 27, close bracket.

Therefore, the number of visitors increases at the same rate over both intervals.

7 0
3 years ago
Sadlier vocabulary workshop level f unit 6 vocabulary in context bizarre preferences are
Delvig [45]
<span>Eccentric
   Being eccentric can be likewise called peculiarity is irregular or odd conduct with respect to a person. This conduct would commonly be seen as surprising or pointless, without being verifiably maladaptive. Whimsy is diverged from "ordinary" conduct, the almost general means by which people in the public eye tackle given issues and seek after specific needs in regular daily existence. Individuals who reliably show benevolently capricious conduct are marked as "erraticisms</span>
8 0
4 years ago
Other questions:
  • Which question is a biased question? What is your favorite color out of red, blue, and green? How old are you? Do you prefer a b
    12·1 answer
  • Help please idk how to do this
    14·1 answer
  • Find the mean, median, and mode of the data set. Round to the nearest tenth.
    14·2 answers
  • Find the total cost for $1500 and a 7% tax
    15·1 answer
  • Three billion sixty million sixty six thousand nine hundred ​
    13·1 answer
  • When u multiply2/3 by a fraction less than one,how does the product compare to the fraction.explain
    14·1 answer
  • Which pair of ratios is equivalent
    13·1 answer
  • A store purchased a playground slide and marked it up 75% from the original cost of $452.48. A week later, the store placed the
    12·2 answers
  • Since it is given that AB ≅ AC, it must also be true that AB = AC. Assume ∠B and ∠C are not congruent. Then the measure of one a
    13·2 answers
  • John's goal is to have more than −7-7 −7 minus, 7 dollars in his bank account by the end of the month. The variable dd d d is th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!