No. The speed of light does change. You mean speed of light in a vacuum. Measuring that value is elementary, in a 2-way measurement, as you show.
Answer:
1.23 j/g. °C
Explanation:
Given data:
Mass of metal = 35.0 g
Initial temperature = 21 °C
Final temperature = 52°C
Amount of heat absorbed = 320 cal (320 ×4.184 = 1338.88 j)
Specific heat capacity of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 52°C - 21 °C
ΔT = 31°C
1338.88 j= 35 g ×c× 31°C
1338.88 j= 1085 g.°C ×c
1338.88 j/1085 g.°C = c
1.23 j/g. °C = c
Answer:
electrolysis of brine
Explanation:
Rock salt deposits are usually mined; occasionally water is pumped down, and brine which contain 25 percent of sodium chloride is found
so d brine is electrolyzed to produce chlorine
<span>The outer layers of the planet are gas. Deeper within the planet, pressure compresses the gases into a liquid. Some evidence suggests that Jupiter may have a small rocky core at its center.</span>
Answer:
The answer to your question is Volume = 11.4 L
Explanation:
Data
Volume 1 = V1 = 6 L
Pressure 1 = P1 = 1 atm
Temperature 1 = T1 = 22°C
Volume 2 = V2 = ?
Pressure 2 = 0.45 atm
Temperature 2 = -21°C
Process
1.- Convert temperature (°C) to °K
T1 = 273 + 22 = 295°K
T2 = 273 + (-21) = 252°K
2.- Use the combined gas law to solve this problem
P1V1 / T1 = P2V2 / T2
-Solve for V2
V2 = P1V1T2 / T1P2
-Substitution
V2 = (6)(1)(252) / (295)(0.45)
- Simplification
V2 = 1512 / 132.75
- Result
V2 = 11.38 L