Answer: It completely dissociates in water is a characteristic of strong acid.
Explanation:
An acid which dissociates completely to give hydrogen ions
is called a strong acid.
For example, HCl is a strong acid and it dissociates completely as follows.

Strong acids are able to conduct electricity in water as more number of ions are present in the solution as compared to the ions present in a solution of weak acid.
Strong acids increase the concentration of
ions.
Thus, we can conclude that it completely dissociates in water is a characteristic of strong acid.
Answer:
Animal? Bacteria? Plant? Fungi? What do these figures represent?
2
None of the above! These organisms may be single-celled like bacteria, and they may look like a fungus. They also may hunt for food like an animal or photosynthesize like a plant. And, yet, they do not fit into any of these groups. These organisms are protists!
What are Protists?
3
Protists are eukaryotes, which means their cells have a nucleus and other membrane-bound organelles. Most protists are single-celled. Other than these features, they have very little in common. You can think about protists as all eukaryotic organisms that are neither animals, nor plants, nor fungi.
4
Although Ernst Haeckel set up the Kingdom Protista in 1866, this kingdom was not accepted by the scientific world until the 1960s. These unique organisms can be so different from each other that sometimes Protista is called the “junk drawer" kingdom. Just like a junk drawer, which contains items that don't fit into any other category, this kingdom contains the eukaryotes that cannot be put into any other kingdom. Therefore, protists can seem very different from one another.
Explanation:
Hope it helps, some how.
Answer:Acid catalyst is needed to increase the electrophilicity of Carbonyl group of Carboxylic acid as alcohol is a weak nucleophile.
Alternatively esters can be synthesised by converting carboxylic acid into acyl chloride using thionyl chloride(SOCl_{2} and then further treating acyl chloride with alcohol.
Carboxylic acid and esters can be easily distinguished on the basis of IR as carboxylic acid would contain a broad intense peak in 2500-3200cm_{-1} corresponding to OH stretching frequency whereas esters would not contain any such broad intense peak.
Alcohol and esters can also be distinguished using IR as alcohols would contain a broad intense peak at around 3200-3600cm_{-1}
Explanation: For the synthesis of esters using alcohol and carboxylic acid we need to add a little amount of acid in the reaction . The acid used here increases the electrophilicity of carbonyl carbon and hence makes it easier for a weaker nucleophile like alcohol to attack the carbonyl carbon of acid.
The oxygen of the carbonyl group is protonated using the acidic proton which leads to the generation of positive charge on the oxygen. The positive charge generated is delocalised over the whole acid molecule and hence the electrophilicity of carbonyl group is increased. Kindly refer attachment for the structures.
If we simply mix the acid and alcohol then no appreciable reaction would take place between them and ester formation would not take place because the carboxylic acid in that case is not a good electrophile whereas alcohol is also not a very strong nucleophile which can attack the carbonyl group.
Alternatively we can use thionyl chloride or any other reagent which can convert the carboxylic acid into acyl chloride. Acyl chloride is very elctrophilic and alcohol can very easily attack the acyl chloride and esters could be synthesized.
The carboxylic acid and ester can very easily be distinguished on the basis of broad intense OH stretching frequency peak at around 2500-3200cm_{-1} . The broad intense OH stretching frequency peak is present in carboxylic acids as they contain OH groups and absent in case of esters .
Likewise esters and alcohols can also be distinguished on the basis IR spectra as alcohols will have broad intense spectra at around 3200-3600cm_{-1}corresponding to OH stretching frequency whereas esters will not have any such peak. Rather esters would be having a Carbonyl stretching frequency at around 1720-1760
When hydrogen and oxygen combine to form water can be classified as a PRODUCT
The computation for molarity is:
(x) (0.175 L) = 0.0358 g / 598 g/mol
x = 0.000342093 M
Whereas the osmotic pressure calculation:
pi = iMRT
pi = (1) (0.000342093 mol/L) (0.08206 L atm / mol K) (298 K)
pi = 0.0083655 atm
Converting the answer to torr, will give us:
0.0083655 atm times (760 torr/atm) = 6.35778 torr
which rounds off to 6.36 torr