Answer:
<em>17 m/s west</em>
Explanation:
Runner 1 has velocity = 10 m/s west
runner 2 has velocity = 7 m/s east
From the frame of reference of runner 2, we can imagine runner 2 as standing still, and runner 1 moving away from him, towards the west with their combined velocity of
velocity = 10 m/s + 7 m/s = <em>17 m/s west</em>
Answer:
2.3 ×
Explanation:
1 kg = 1000 g.
0.00023 kg x 1000 g = 0.23 grams
Answer:
A
Explanation:
Because both the elements are non-metals
Answer:
final position = 325 m
Explanation:
distance covered in 1 second = speed x time
= 355 m/s x 1 s
= 355 m
∴ final position = initial position + distance covered
= - 30 m + 355 m
= 325 m
The car's speed was zero at the beginning of the 12 seconds,
and 18 m/s at the end of it. Since the acceleration was 'uniform'
during that time, the car's average speed was (1/2)(0 + 18) = 9 m/s.
12 seconds at an average speed of 9 m/s ==> (12 x 9) = 108 meters .
==========================================
That's the way I like to brain it out. If you prefer to use the formula,
the first problem you run into is: You need to remember the formula !
The formula is D = 1/2 a T²
Distance = (1/2 acceleration) x (time in seconds)²
Acceleration = (change in speed) / (time for the change)
= (18 m/s) / (12 sec)
= 1.5 m/s² .
Distance = (1/2 x 1.5 m/s²) x (12 sec)²
= (0.75 m/s²) x (144 sec²) = 108 meters .