Answer:
$82.875
Step-by-step explanation:
From the given information:
Assume F is used to denote the two cards;
If there are four aces among 52 playing cards, the chance of selecting the first ace is = ![\dfrac{4}{52}](https://tex.z-dn.net/?f=%5Cdfrac%7B4%7D%7B52%7D)
After selecting the first ace, we have only 3 aces remaining and a total of 51 playing cards. Thus, the chance of selecting the second ace will be ![\dfrac{3}{51}](https://tex.z-dn.net/?f=%5Cdfrac%7B3%7D%7B51%7D)
By applying product rule, we can determine the chance of selecting two aces without replacement as follows:
i.e.
![P(F=22)=\dfrac{4}{52}\times \dfrac{3}{51}](https://tex.z-dn.net/?f=P%28F%3D22%29%3D%5Cdfrac%7B4%7D%7B52%7D%5Ctimes%20%5Cdfrac%7B3%7D%7B51%7D)
![= \dfrac{1}{221}](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B1%7D%7B221%7D)
The probability of getting one ace, one face is:
![P(F=21) =( \dfrac{4}{52}\times \dfrac{12}{51})+( \dfrac{12}{52}\times \dfrac{4}{51})](https://tex.z-dn.net/?f=P%28F%3D21%29%20%3D%28%20%5Cdfrac%7B4%7D%7B52%7D%5Ctimes%20%5Cdfrac%7B12%7D%7B51%7D%29%2B%28%20%5Cdfrac%7B12%7D%7B52%7D%5Ctimes%20%5Cdfrac%7B4%7D%7B51%7D%29)
![P(F=21) = \dfrac{4}{221}\times\dfrac{4}{221}](https://tex.z-dn.net/?f=P%28F%3D21%29%20%3D%20%5Cdfrac%7B4%7D%7B221%7D%5Ctimes%5Cdfrac%7B4%7D%7B221%7D)
![P(F=21) = \dfrac{8}{221}](https://tex.z-dn.net/?f=P%28F%3D21%29%20%3D%20%5Cdfrac%7B8%7D%7B221%7D)
Since there are 4 aces, 4 nine, and 12 faces in a card deck
The probability of getting one ace, one nine, or two faces now will be:
![P(F=20) = (\dfrac{4}{52} \times \dfrac{4}{51})+ (\dfrac{4}{52} \times \dfrac{4}{51}) + (\dfrac{12}{52} \times \dfrac{11}{51})](https://tex.z-dn.net/?f=P%28F%3D20%29%20%3D%20%28%5Cdfrac%7B4%7D%7B52%7D%20%5Ctimes%20%5Cdfrac%7B4%7D%7B51%7D%29%2B%20%28%5Cdfrac%7B4%7D%7B52%7D%20%5Ctimes%20%5Cdfrac%7B4%7D%7B51%7D%29%20%2B%20%28%5Cdfrac%7B12%7D%7B52%7D%20%5Ctimes%20%5Cdfrac%7B11%7D%7B51%7D%29)
![P(F=20) = (\dfrac{53}{663} )](https://tex.z-dn.net/?f=P%28F%3D20%29%20%3D%20%28%5Cdfrac%7B53%7D%7B663%7D%20%20%29)
Now, the probability of at least 20 now is:
![\text{P(F at least 20)} = \dfrac{1}{221}+\dfrac{8}{221}+\dfrac{53}{663}](https://tex.z-dn.net/?f=%5Ctext%7BP%28F%20at%20least%2020%29%7D%20%3D%20%5Cdfrac%7B1%7D%7B221%7D%2B%5Cdfrac%7B8%7D%7B221%7D%2B%5Cdfrac%7B53%7D%7B663%7D)
![\text{P(F at least 20)} = \dfrac{80}{663}](https://tex.z-dn.net/?f=%5Ctext%7BP%28F%20at%20least%2020%29%7D%20%3D%20%5Cdfrac%7B80%7D%7B663%7D)
If H represents the amount of prize of the expected winnings:
Then;
![(H - 10) (\dfrac{80}{663}) + (-10)(\dfrac{663-80}{663}) = 0](https://tex.z-dn.net/?f=%28H%20-%2010%29%20%28%5Cdfrac%7B80%7D%7B663%7D%29%20%2B%20%28-10%29%28%5Cdfrac%7B663-80%7D%7B663%7D%29%20%3D%200)
![\dfrac{80(H-10)}{663}-\dfrac{5830}{663}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B80%28H-10%29%7D%7B663%7D-%5Cdfrac%7B5830%7D%7B663%7D%3D0)
![\dfrac{80(H-10)}{663}=\dfrac{5830}{663}](https://tex.z-dn.net/?f=%5Cdfrac%7B80%28H-10%29%7D%7B663%7D%3D%5Cdfrac%7B5830%7D%7B663%7D)
80H - 800 = 5830
80H = 5830 +800
80H = 6630
H = 6630/80
H = $82.875
The prize should be $82.875 to make a winning positive.