There are several different forms for the equation of a line. Point-Slope works pretty well for this one.
Remember, point-slope form looks like this:

Where the _1 means you sub in a point that matches that coordinate.
(x,y)
m, is the slope.
So an equation of the line would look like this:
(y - 2) = 1(x - 1)
The times 1 slope is implied, so you could also write it as:
(y - 2) = (x - 1)
(Removing the parenthesis is also acceptable, in this case)
Let's say you were not given it in point slope form. Then let's take the point slope form we made and put it into the slope intercept form by solving for y.
y -2 = x - 1
Solve for y by adding 2 on both sides.
y - 2 + 2 = x - 1 + 2
y = x + 1
Once again the 1 slope is implied. So these are both acceptable forms. I hope this helps!
Answer: They need 7 buses
Step-by-step explanation:
40 x 2 =80 560 divided by 80 =7
Answer:
I honestly do not know im sorry something else?
Step-by-step explanation:
20+12x
20+12(40)
20+480
500
total compensation for this week = $500
Answer:
(a) See attachment for tree diagram
(b) 24 possible outcomes
Step-by-step explanation:
Given


Solving (a): A possibility tree
If urn 1 is selected, the following selection exists:
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
If urn 2 is selected, the following selection exists:
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
<em>See attachment for possibility tree</em>
Solving (b): The total number of outcome
<u>For urn 1</u>
There are 4 balls in urn 1

Each of the balls has 3 subsets. i.e.
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
So, the selection is:


<u>For urn 2</u>
There are 4 balls in urn 2

Each of the balls has 3 subsets. i.e.
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
So, the selection is:


Total number of outcomes is:


