<span>There are two physical differences
between Low pressure systems and </span>High pressure systems.
First, is the circulation surrounding
them.
Secondly, is the atmospheric motion
that they cause.
Low pressure systems circulate counter-clockwise. High pressure systems
circulate clockwise. These "motions" are the
building blocks in our atmosphere. They give us our weather.
A Low’s counter-clockwise circulation forces air upward (ultimately resulting in
condensation, cloud formation and ultimately precipitation). A High’s clockwise
circulation causes a sinking motion in the atmosphere, resulting in fair/clearer
and often sunnier skies.
Answer:
the cytoplasm is negative and extracellular fluid is positive because of the unequal distribuation of anions and cations on both sides.
Explanation:
Answer:
C. It is a male with atleast one dominant allele
Explanation:
In the given pedigree, the two normal parents of the generation I have one daughter with the attached earlobe. Since the trait is recessive, the daughter should be homozygous recessive to express the trait. The genotype of the daughter (shaded circle in generation II) is "aa". To have a daughter with "aa" genotype, both the parents should have one copy of "a" allele. So, the genotype of both parents is "Aa".
In generation II, individual A is non-shaded square. Squares represent males in a pedigree. Since its not shaded, it does not have attached earlobe. Both the parents are heterozygous dominant for attached earlobes (Aa x Aa = 1/4 AA : 1/2 Aa : 1/4 aa). The genotype of this individual may be AA or Aa.
It is an oomycete.
These can often look like fungi, but they're not! They're actually more closely related to algae than fungi.
I would say presence of inorganic molecules I THINK not sure.