1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stich3 [128]
3 years ago
13

Which formula can be used to describe the sequence?

Mathematics
1 answer:
alexdok [17]3 years ago
7 0

Answer:

f(x+1) = -3/4 × f(x)

Step-by-step explanation:

first of all, the sign of the numbers in the sequence is alternating. so, there must be a "-" involved.

that eliminates the first and third answer options.

and the absolute values of the numbers in the sequence are going down. |f(x+1)| < |f(x)|

that eliminates the fourth answer option, as this says that

|f(x)| < |f(x+1)|. and that is the opposite of how the actual sequence behaves.

You might be interested in
I need the answer explained
Rom4ik [11]

Answer:

1.33

Step-by-step explanation:

62 can only be subtracted from 82 once. So 82.46-62 would be 20.46. Since you can't subtract anymore you put a decimal point. 62x3=186 and 20.46-186=1.86 and you can subtract 186-186=0.

8 0
3 years ago
Use the method of undetermined coefficients to solve the given nonhomogeneous system. x' = −1 5 −1 1 x + sin(t) −2 cos(t)
AlekseyPX

It looks like the system is

x' = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}

Compute the eigenvalues of the coefficient matrix.

\begin{vmatrix} -1 - \lambda & 5 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0 \implies \lambda = \pm2i

For \lambda = 2i, the corresponding eigenvector is \eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top such that

\begin{bmatrix} -1 - 2i & 5 \\ -1 & 1 - 2i \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Notice that the first row is 1 + 2i times the second row, so

(1+2i) \eta_1 - 5\eta_2 = 0

Let \eta_1 = 1-2i; then \eta_2=1, so that

\begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} = 2i \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}

The eigenvector corresponding to \lambda=-2i is the complex conjugate of \eta.

So, the characteristic solution to the homogeneous system is

x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix}

The characteristic solution contains \cos(2t) and \sin(2t), both of which are linearly independent to \cos(t) and \sin(t). So for the nonhomogeneous part, we consider the ansatz particular solution

x = \cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}

Differentiating this and substituting into the ODE system gives

-\sin(t) \begin{bmatrix} a \\ b \end{bmatrix} + \cos(t) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \left(\cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}\right) + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}

\implies \begin{cases}a - 5c + d = 1 \\ b - c + d = 0 \\ 5a - b + c = 0 \\ a - b + d = -2 \end{cases} \implies a=\dfrac{11}{41}, b=\dfrac{38}{41}, c=-\dfrac{17}{41}, d=-\dfrac{55}{41}

Then the general solution to the system is

x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix} + \dfrac1{41} \cos(t) \begin{bmatrix} 11 \\ 38 \end{bmatrix} - \dfrac1{41} \sin(t) \begin{bmatrix} 17 \\ 55 \end{bmatrix}

7 0
2 years ago
Express in standard form 24.12<br>​
ANTONII [103]

Answer:

2.412*10^{1}

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find the exact value of sec theta if csc theta = -4/3 and the terminal side of theta lies in quadrant III
GREYUIT [131]

Answer:

-4 sqrt(7)/7

Step-by-step explanation:

csc theta = -4/3

csc theta = hypotenuse / opposite side

hypotenuse = 4  

opposite  = 3

Using the pythagorean theorem

a^2 + b^2 = c^2

3^2 + b^2 = 4^2

9+b^2 = 16

b^2 = 16-9

b^2 = 7

Taking the square root

sqrt(b^2) = sqrt(7)

b = sqrt(7)

We are in the third quadrant so only tan  and cot are positive

that means the x and y values are "negative"  so a = -3 and b = - sqrt(7)

sec theta = hypotenuse / adjacent

                = 4/ - sqrt(7)

rationalizing  

                   -4 sqrt(7)/ sqrt(7)* sqrt(7)

                = -4 sqrt(7)/7

           

3 0
3 years ago
Which best describes the sides of a parallelogram?
Thepotemich [5.8K]
<span>
B.
Both pairs of opposite sides are parallel</span>
8 0
4 years ago
Read 2 more answers
Other questions:
  • Un triángulo rectángulo tiene un área de 84 pies2 y una hipotenusa de 25 pies de largo. ¿Cuáles son las longitudes de sus otros
    5·1 answer
  • What is the angle in a triangle that is part of a linear pair?
    5·2 answers
  • What is a straight path that extends without end in opposite directions.
    6·2 answers
  • This figure shows how to create a six-pointed star from twelve equilateral triangle tiles: (SEE FIGURE ATTACHED) If each of the
    7·1 answer
  • What is 63849 to the nearest ten
    13·1 answer
  • The scale of a map is 1 in = 11.9 miles. How many inches will be drawn on the map to represent 30.9 miles?​
    15·1 answer
  • Um terreno retangular possui o comprimento cinco vezes maior que a largura. Sabendo que o perímetro desse terreno é igual a 180
    9·1 answer
  • a baby weighs 18 pounds a her 4 month old appointment. six months later she weighs 24 pounds by what percentage did the baby's w
    10·2 answers
  • 6. Riley let his friend borrow $12,750. He wants to be paid back in 4 years and is going to charge his friend a 5.5% interest ra
    14·1 answer
  • Find the Y intercept
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!