f-¹(x)=
Answer:
Solution given:
f(x)=
Let f(x)=y
y=
Interchanging role of x and y
x=
doing crisscrossed multiplication
x(y+7)=-2y+2
now solve it:
xy+7x=-2y+2
keep like terms in one side
xy+2y=2-7x
take common
y(x+2)=2-7x
make a value of y
y=
So,
f-¹(x)=
We know that
If the scalar product of two vectors<span> is zero, both vectors are </span><span>orthogonal
</span><span>A. (-2,5)
</span>(-2,5)*(1,5)-------> -2*1+5*5=23-----------> <span>are not orthogonal
</span><span>B. (10,-2)
</span>(10,-2)*(1,5)-------> 10*1-2*5=0-----------> are orthogonal
<span>C. (-1,-5)
</span>(-1,-5)*(1,5)-------> -1*1-5*5=-26-----------> are not orthogonal
<span>D. (-5,1)
</span>(-5,1)*(1,5)-------> -5*1+1*5=0-----------> are orthogonal
the answer is
B. (10,-2) and D. (-5,1) are orthogonal to (1,5)
Answer:
-18 3/4
Step-by-step explanation:
Y = x^2 - 16x + 17
-16/2 = (-8)
(-8)^2 = 64
Add 64 and subtract 64
y = x^2 - 16x + 64 + 17 - 64
y = (x - 8)^2 - 47