X=106 with working shown in the photo
<u>Given</u>:
Given that the bases of the trapezoid are 21 and 27.
The midsegment of the trapezoid is 5x - 1.
We need to determine the value of x.
<u>Value of x:</u>
The value of x can be determined using the trapezoid midsegment theorem.
Applying the theorem, we have;

where b₁ and b₂ are the bases of the trapezoid.
Substituting Midsegment = 5x - 1, b₁ = 21 and b₂ = 27, we get;

Multiplying both sides of the equation by 2, we have;

Simplifying, we have;

Adding both sides of the equation by 2, we get;

Dividing both sides of the equation by 10, we have;

Thus, the value of x is 5.
Answer:
B. the two triangles are congruent because of SSS postulate
In a right triangle, the measure of one acute angle is 26°. What is the measure of the other acute angle? 180° 154° 64° 90°
There are two different lines