Answer:

Step-by-step explanation:
Given


Required
Determine MSE
This is calculated as:

Where:

denominator df
So, we have:


To calculate the df, we have:
--- observations
treatments
So:




So, we have:



<span>Multiply one of the equations so that both equations share a common complementary coefficient.
In order to solve using the elimination method, you need to have a matching coefficient that will cancel out a variable when you add the equations together. For the 2 equations given, you have a huge number of choices. I'll just mention a few of them.
You can multiply the 1st equation by -2/5 to allow cancelling the a term.
You can multiply the 1st equation by 5/3 to allow cancelling the b term.
You can multiply the 2nd equation by -2.5 to allow cancelling the a term.
You can multiply the 2nd equation by 3/5 to allow cancelling the b term.
You can even multiply both equations.
For instance, multiply the 1st equation by 5 and the second by 3. And in fact, let's do that.
5a + 3b = –9
2a – 5b = –16
5*(5a + 3b = -9) = 25a + 15b = -45
3*(2a - 5b = -16) = 6a - 15b = -48
Then add the equations
25a + 15b = -45
6a - 15b = -48
=
31a = -93
a = -3
And then plug in the discovered value of a into one of the original equations and solve for b.</span>
The response is
<span>x greater than or equal to -9
</span>proof
8x - (5x + 4)>= -31, 3x- 4>= -31, 3x >= -27, <span>x>= -27/3= -9
so </span><span>x greater than or equal to -9</span>
In my opinion for me it looks like it could be A or B but if I am wrong then I try :(
15 and 450 because you divide and multiply until you get the same number