The correct answer is 'Equation F can be written as 2d + 1 = 3d + 7'. In order to find the answer to a system of equations, the two equations must be set equal to each other. For instance, if we had the equations x = y + 1 and x = 3y - 1, we would set the two equations equal to one another to find the answer.
x = y + 1
x = 3y - 1
y + 1 = 3y - 1
1 = 2y - 1
2 = 2y
1 = y
x = y + 1
x = 1 + 1
<span>x = 2
We can use this to solve the set of equations above.
</span><span>2d + 1 = 3d + 7
</span>1 = d + 7
-6 = d
c = 2d + 1
c = 2(-6) + 1
c = -12 + 1
c = -11
Hope this helps!
WXY = XYW ( = 41 ) ⇒ XYW is a isosceles triangle
⇒ XW = YW
⇒ 54 = 6x + 6
⇒ 6( x + 1 ) = 54
⇒ x + 1 = 9
⇒ x = 8
ok done. Thank to me :>
Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
10 move the decimal point over 3 spots