Dilation because the sides will not be the same size as the original
Probability=number of specific outcomes / total possible outcomes
P(g)=12/(12+8)
P(g)=12/20
P(g)=3/5
Answer:
a) not proportional
b) proportional; k = 
Step-by-step explanation:
a) for any proportional equation, the line must pass through the origin. The equation in a) is y = 4x + 1, and the '+1' is the y-intercept. This means that the line does not pass through the origin, so x and y cannot increase by the same amount (i.e. they are not proportional).
Another way to determine this is is to use the y = kx base. If you have an equation that fits that it's likely proportional.
Here, if the equation was only y = 4x then it'd be proportional because u can see that k = 4. This is not the equation though, and the 4x + 1 doesn't fit to the y = kx formula so it can't be proportional.
b) straight away you can see that there's no 'c' term (y = mx + c) which means the y-intercept is 0, so the line passes through the origin. While this does not immediately mean the line is proportional, you can make sure that it is by checking it fits with the y = kx equation.
y = -(3/5)x fits with y = kx, with k being -3/5
Answer:
The two triangles are related by Side-Side-Side (SSS), so the triangles can be proven congruent.
Step-by-step explanation:
There are no angles that can be shown to be congruent to one another, so this eliminates all answer choices with angles (SSA, SAS, ASA, AAA, AAS).
This leaves you with either the HL (Hypotenuse-Leg) Theorem or SSS (Side-Side-Side) Theorem. We could claim that the triangles can be proven congruent by HL, however, we aren't exactly sure as to whether or not the triangles have a right angle. There is no indicator, and in this case, we cannot assume so.
This leaves you with the SSS Theorem.