Answer:
5
Step-by-step explanation:
The complex number 4 + 2i on the complex plane has coordinates (4,2) and the complex number 7 - 2i has coordinates (7,-2). Thus, the length of a segment in the complex plane with endpoints at 4 + 2i and 7 – 2i is
![\sqrt{(4-7)^2+(2-(-2))^2}=\sqrt{(-3)^2+4^2}=\sqrt{9+16}=\sqrt{25}=5.](https://tex.z-dn.net/?f=%5Csqrt%7B%284-7%29%5E2%2B%282-%28-2%29%29%5E2%7D%3D%5Csqrt%7B%28-3%29%5E2%2B4%5E2%7D%3D%5Csqrt%7B9%2B16%7D%3D%5Csqrt%7B25%7D%3D5.)
Answer:
• let's first get the percentage decrease:
![= { \rm{100\% - 25 \% }} \\ { \rm{ = 75\%}}](https://tex.z-dn.net/?f=%20%3D%20%7B%20%5Crm%7B100%5C%25%20-%2025%20%5C%25%20%7D%7D%20%5C%5C%20%7B%20%5Crm%7B%20%3D%2075%5C%25%7D%7D)
• then multiply the percentage decrease with the mass given:
![= { \tt{75\% \times 140}} \\ \\ = { \tt{ \frac{75}{100} \times 140}} \\ \\ = { \underline{ \tt{ \: \: 105 \: g \: }}}](https://tex.z-dn.net/?f=%20%3D%20%7B%20%5Ctt%7B75%5C%25%20%5Ctimes%20140%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Ctt%7B%20%5Cfrac%7B75%7D%7B100%7D%20%20%5Ctimes%20140%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Cunderline%7B%20%5Ctt%7B%20%5C%3A%20%20%5C%3A%20105%20%5C%3A%20g%20%5C%3A%20%7D%7D%7D)
Answer:
0.1333 or ![\frac{2}{15}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B15%7D)
Step-by-step explanation:
The attached image contains the steps.
Answer:
c
Step-by-step explanation:
according to PEMDAS you should always do whats inside the parentheses first, then you'll multiply the parentheses by 5