20/45 would be 4/9 in simplest form. hope that helped
If the baby went to sleep at 9:30 and woke at 2:45.
Then the baby slept 5 hours and 15 minutes.
Just start at 9:30 and skip count 9:30, 10:30, 11:30, 12:30, 1:30, 2:30 that's 5 hours and from 2:30 to 2:45 is 15 minutes.
Hope this helps. :)
Answer:
Agree
Step-by-step explanation:
We have
![\sqrt[k]{\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)} \\\\ = \exp\left(\dfrac{\ln\left(\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)\right)}k\right) \\\\ = \exp\left(\dfrac{\ln\left(\Gamma\left(\dfrac1k\right)\right)+\ln\left( \Gamma\left(\dfrac2k\right)\right)+ \cdots +\ln\left(\Gamma\left(\dfrac kk\right)\right)}k\right)](https://tex.z-dn.net/?f=%5Csqrt%5Bk%5D%7B%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%7D%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%5Cright%29%7Dk%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%5Cright%29%2B%5Cln%5Cleft%28%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%5Cright%29%2B%20%5Ccdots%20%2B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%5Cright%29%7Dk%5Cright%29)
and as k goes to ∞, the exponent converges to a definite integral. So the limit is
![\displaystyle \lim_{k\to\infty} \sqrt[k]{\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)} \\\\ = \exp\left(\lim_{k\to\infty} \frac1k \sum_{i=1}^k \ln\left(\Gamma\left(\frac ik\right)\right)\right) \\\\ = \exp\left(\int_0^1 \ln\left(\Gamma(x)\right)\, dx\right) \\\\ = \exp\left(\dfrac{\ln(2\pi)}2}\right) = \boxed{\sqrt{2\pi}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bk%5Cto%5Cinfty%7D%20%5Csqrt%5Bk%5D%7B%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%7D%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Clim_%7Bk%5Cto%5Cinfty%7D%20%5Cfrac1k%20%5Csum_%7Bi%3D1%7D%5Ek%20%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cfrac%20ik%5Cright%29%5Cright%29%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cint_0%5E1%20%5Cln%5Cleft%28%5CGamma%28x%29%5Cright%29%5C%2C%20dx%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%282%5Cpi%29%7D2%7D%5Cright%29%20%3D%20%5Cboxed%7B%5Csqrt%7B2%5Cpi%7D%7D)
To make a prediction as to how much you can climb in 5 hours we can find the line of regression (or line of best fit) for the data given, with time as the explanatory (or independent) variable and height as the response (or dependent) variable. Putting this data into the calculator we get:
Height (ft) = 33.153 + 2.333*Time (min)
Now if we want to predict the distance you are able to climb in 5 hours, we need to convert this to minutes first (as those are the units in the formula) - 5 hours = 300 minutes, thus:
Height (ft) = 33.153 + 2.333*300
= 733.053 ft
733.053 < 1000, therefor it is predicted that it will not be possible to climb a 1000 ft rock formation within 5 hours