<h2>>>> Answer <<<</h2>
Let's check which polynomial is divisible by ( x - 1 ) using hit , trial and error method .
A ( x ) = 3x³ + 2x² - x
The word " divisible " itself says that " it is a factor "
Using factor theorem ;
Let;
=> x - 1 = 0
=> x = 1
Substitute the value of x in p ( x )
p ( 1 ) =
3 ( 1 )³ + 2 ( 1 )² - 1
3 ( 1 ) + 2 ( 1 ) - 1
3 + 2 - 1
5 - 1
4
This implies ;
A ( x ) is not divisible by ( x - 1 )
Similarly,
B ( x ) = 5x³ - 4x² - x
B ( 1 ) =
5 ( 1 )³ - 4 ( 1 )² - 1
5 ( 1 ) - 4 ( 1 ) - 1
5 - 4 - 1
5 - 5
0
This implies ;
B ( x ) is divisible by ( x - 1 )
Similarly,
C ( x ) = 2x³ - 3x² + 2x - 1
C ( 1 ) =
2 ( 1 )³ - 3 ( 1 )² + 2 ( 1 ) - 1
2 ( 1 ) - 3 ( 1 ) + 2 - 1
2 - 3 + 2 - 1
4 - 4
0
This implies ;
C ( x ) is divisible by ( x - 1 )
Similarly,
D ( x ) = x³ + 2x² + 3x + 2
D ( 1 ) =
( 1 )³ + 2 ( 1 )² + 3 ( 1 ) + 2
1 + 2 + 3 + 2
8
This implies ;
D ( x ) is not divisible by ( x - 1 )
<h2>Therefore ; </h2>
<h3>B ( x ) & C ( x ) are divisible by ( x - 1 ) </h3>
Answer:
C. Parallelogram and rectangle
Step-by-step explanation:
If it was a square...all the sides would be the same, so it cannot be a square, therefore it is not A or B
Answer:
C. (-4x^2)+2xy^2+[10x^2y+(-4x^2y)
Step-by-step explanation:
A. [9-4x2) + (-4x2y) + 10x2y] + 2xy2 : in this polynomial the first term is not a like term, then this is incorrect.
B. 10x2y + 2xy2 + [(-4x2) + (-4x2y)] : in this polynomial, the terms that are grouped, are not like terms, then is incorrect.
C. (-4x2) + 2xy2 + [10x2y + (-4x2y)] ; This polynomial is the right answer because the like terms are grouped.
D. [10x2y + 2xy2 + (-4x2y)] + (-4x2): This polynomial is incorrect because one of the terms that are grouped is not a like term.
Answer:

Step-by-step explanation:
In a quadratic equation in the Standard form

You need to remember that "a", "b" and "c" are the numerical coefficients (Where "a" is the leading coefficient and it cannot be zero:
).
You can observe that the given quadratic equation is written in the Standard form mentioned before. This is:

Therefore, you can identify that the values of "a", "b" and "c" are the following:

Step-by-step explanation:
f(x) = x² + 1, where x >= 0.
Let y be f(x).
=> y = x² + 1
=> x² = y - 1
=> x = √(y - 1) because x is non-negative.
Hence f^-1(x) = √(x - 1), where x >= 1.