1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
levacccp [35]
4 years ago
11

How to simplify (a+3b)+3(4a+b)

Mathematics
2 answers:
MArishka [77]4 years ago
8 0

Answer: 13a+3b+18

Step-by-step explanation:

First distribute the 3 to 4a+b

Then you get 12a+18

Add 12a+18 with a+3b

enyata [817]4 years ago
6 0

Answer:

13a + 6b

Step-by-step explanation:

Given

(a + 3b) + 3(4a + b) ← distribute parenthesis

= a + 3b + 12a + 3b ← collect like terms

= 13a + 6b

You might be interested in
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.
mote1985 [20]

Answer:

\frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

Step-by-step explanation:

To find the derivative of the function y(x)=\ln \left(\frac{x}{x^2+1}\right) you must:

Step 1. Rewrite the logarithm:

\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 2. The derivative of a sum is the sum of derivatives:

\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }}={\left(\left(\ln{\left(x \right)}\right)^{\prime } - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }\right)

Step 3. The derivative of natural logarithm is \left(\ln{\left(x \right)}\right)^{\prime }=\frac{1}{x}

{\left(\ln{\left(x \right)}\right)^{\prime }} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }={\frac{1}{x}} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 4. The function \ln{\left(x^{2} + 1 \right)} is the composition f\left(g\left(x\right)\right) of two functions f\left(u\right)=\ln{\left(u \right)} and u=g\left(x\right)=x^{2} + 1

Step 5.  Apply the chain rule \left(f\left(g\left(x\right)\right)\right)^{\prime }=\frac{d}{du}\left(f\left(u\right)\right) \cdot \left(g\left(x\right)\right)^{\prime }

-{\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }} + \frac{1}{x}=- {\frac{d}{du}\left(\ln{\left(u \right)}\right) \frac{d}{dx}\left(x^{2} + 1\right)} + \frac{1}{x}\\\\- {\frac{d}{du}\left(\ln{\left(u \right)}\right)} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- {\frac{1}{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}

Return to the old variable:

- \frac{1}{{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- \frac{\frac{d}{dx}\left(x^{2} + 1\right)}{{\left(x^{2} + 1\right)}} + \frac{1}{x}

The derivative of a sum is the sum of derivatives:

- \frac{{\frac{d}{dx}\left(x^{2} + 1\right)}}{x^{2} + 1} + \frac{1}{x}=- \frac{{\left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right)}}{x^{2} + 1} + \frac{1}{x}=\frac{1}{x^{3} + x} \left(x^{2} - x \left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right) + 1\right)

Step 6. Apply the power rule \frac{d}{dx}\left(x^{n}\right)=n\cdot x^{-1+n}

\frac{1}{x^{3} + x} \left(x^{2} - x \left({\frac{d}{dx}\left(x^{2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(x^{2} - x \left({\left(2 x^{-1 + 2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x \frac{d}{dx}\left(1\right) + 1\right)\\

\frac{1}{x^{3} + x} \left(- x^{2} - x {\frac{d}{dx}\left(1\right)} + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x {\left(0\right)} + 1\right)=\\\\\frac{1 - x^{2}}{x \left(x^{2} + 1\right)}

Thus, \frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

3 0
3 years ago
The radius of a circle is 2 kilometers. What is the circles area?
serg [7]

Answer:

12.57km²

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Given that 1 centimeter is approximately 0.4 inches, how many inches
Marina86 [1]

Answer:

Hello,

To find amount of inches in 58 centimeters, you need to use the information given.

0.4 inches = 1 centimeter

??? inches = 58 centimeter

58 x 0.4

= 23.20

Hence your answer is 23.2 inches are in 58 centimeters

Hope this helps ^^

8 0
2 years ago
If you add​ Natalie's age and​ Fred's age, the result is 42 . If you add​ Fred's age to 4 times​ Natalie's age, the result is 84
SpyIntel [72]
42 x 4 is 168 and 84 x 4 is 336
5 0
3 years ago
Read 2 more answers
A rectangle has a links of 5" and a with of X inches write a equation to represent the perimeter of the rectangle explain your r
Zarrin [17]

Answer:

10+2x

Step-by-step explanation:

A rectangle has 4 sides. Two pairs of sides are congruent.

For example a rectangle could have sides of 6, 10, 6, and 10.

So the perimeter would be the sum of those sides, 6+6+10+10.

6+6+10+10 can be written like 2(6)+2(10)

For the rectangle in your question it would be 5+5+x+x, which can be written like 2(5)+2(x)

Simplify to 10+2x.

8 0
4 years ago
Other questions:
  • Convert 2 liters to gallons.
    11·1 answer
  • Colby stated that there is no solution to the equation 4( − 8) = 4 − 8. Do you agree or disagree? Explain your reasoning.
    5·1 answer
  • Find two consecutive negative integers who’s product is 132
    9·2 answers
  • Write 12 as a product of primes. Use index notation where appropriate.
    13·1 answer
  • Solve for x in the function
    14·1 answer
  • What is less then -1 and greater then -5
    6·1 answer
  • 35. Explain the difference between the reciprocal of x^2
    15·1 answer
  • PLEASE HELP <br><br> WILL GIVE BRAINLIEST
    8·2 answers
  • Can someone please help me so I can get to 7th grade math please thank you ❤❤
    6·2 answers
  • PLEASE HELP WILL MARK BRAINEST IF RIGHT!!!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!