<h3><u>68 inches</u></h3>
Because we know how large each hand is, we can multiply the number of hands by the amount of inches each one represents to find the total number of inches.
17 * 4 = 68
Answer:
doop
Step-by-step explanation:
Answer:
1/4, 25%, or 0.25
Step-by-step explanation:
Therefore, as each suit contains 13 cards, and the deck is split up into 4 suits, that leaves us with a 13/52 chance to pick a spade.
That fraction is equivalent to 1/4, so that leaves us with a probability of picking a spade at:
1/4, 25%, or 0.25
Ignore bottom one please brainiest. edit: add cubed after the second bracket
Check the picture below.
well, we want only the equation of the diametrical line, now, the diameter can touch the chord at any several angles, as well at a right-angle.
bearing in mind that <u>perpendicular lines have negative reciprocal</u> slopes, hmm let's find firstly the slope of AB, and the negative reciprocal of that will be the slope of the diameter, that is passing through the midpoint of AB.
![\bf A(\stackrel{x_1}{1}~,~\stackrel{y_1}{4})\qquad B(\stackrel{x_2}{5}~,~\stackrel{y_2}{1}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{1}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{5}-\underset{x_1}{1}}}\implies \cfrac{-3}{4} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{slope of AB}}{-\cfrac{3}{4}}\qquad \qquad \qquad \stackrel{\textit{\underline{negative reciprocal} and slope of the diameter}}{\cfrac{4}{3}}](https://tex.z-dn.net/?f=%5Cbf%20A%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B1%7D-%5Cstackrel%7By1%7D%7B4%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B5%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B-3%7D%7B4%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bslope%20of%20AB%7D%7D%7B-%5Ccfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7B%5Cunderline%7Bnegative%20reciprocal%7D%20and%20slope%20of%20the%20diameter%7D%7D%7B%5Ccfrac%7B4%7D%7B3%7D%7D)
so, it passes through the midpoint of AB,

so, we're really looking for the equation of a line whose slope is 4/3 and runs through (3 , 5/2)
