Answer:
The answer to the question is
The theory of the hot hand is valid in my opinion.
Step-by-step explanation:
The phenomenon of a "hot hand" is that a person who achieves a successful outcome at an attempt has a higher probability of coming out successful in subsequent attempts at the same event.
Based on evidence from the sampled statistics, the likelihood of achieving an increased probability of success on subsequent attempt on the condition that previous attempts were successful in my opinion is plausible. This is because the ability to score points at a game is dependent on several variables, all of which are from previous occurrence, such dependent variables include
1. The inherent ability of the sport athlete to deliver the required input for success. This is a conditional probability for success as such this forms part of the increased acceptance level for the "hot hand" phenomenon
2. Conditions of play may favor a particular probability than others resulting in a change in the mean, and the standard deviation of the distribution resulting in a skewed outcome
3. Increased opportunity giving to the athlete that previously had a successful attempt possibly by the athlete himself by way of confidence, the audience by way of focus on the outcome of the athletes attempt, and the administrators by way of trying to make it achievable and hence easier within the rules for the athlete have a successful attempt
The "hot hand" (also known as the "hot hand phenomenon" or "hot hand fallacy") is the purported phenomenon that a person who experiences a successful outcome has a greater chance of success in further attempts. The concept is often applied to sports and skill-based tasks in general and originates from basketball, whereas a shooter is allegedly more likely to score if their previous attempts were successful, i.e. while having "hot hands.” While previous success at a task can indeed change the psychological attitude and subsequent success rate of a player, researchers for many years did not find evidence for a "hot hand" in practice, dismissing it as fallacious. However, later research questioned whether the belief is indeed a fallacy.[1][2] Recent studies using modern statistical analysis show there is evidence for the "hot hand" in some sporting activities.[2]
Answer:

Step-by-step explanation:
let the number be n , then
4 - 4n = 2n ( add 4n to both sides )
4 = 6n ( divide both sides by 6 )
= n
The number is 
Answer:
Step-by-step explanation:
Firstly, note that -2i really is just z = 0 + (-2)i, so we see that Re(z) = 0 and Im(z) = -2.
When we're going from Cartesian to polar coordinates, we need to be aware of a few things! With Cartesian coordinates, we are dealing explicitly with x = blah and y = blah. With polar coordinates, we are looking at the same plane but with angle and magnitude in consideration.
Graphing z = -2i on the Argand diagram will look like a segment of the y axis. So we ask ourselves "What angle does this make with the positive x axis? One answer you could ask yourself is -90°! But at the same time, it's 270°! Why do you think this is the case?
What about the magnitude? How far is "-2i" stretched from the typical "i". And the answer is -2! Well... really it gets stretched by a factor of 2 but in the negative direction!
Putting all of this together gives us:
z = |mag|*(cos(angle) + isin(angle))
= 2*cos(270°) + isin(270°)).
To verify, let's consider what cos(270°) and sin(270°) are.
If you graph cos(x) and look at 270°, you get 0.
If you graph sin(x) and look at 270°, you get -1.
So 2*(cos(270°) + isin(270°)) = 2(0 + -1*i) = -2i as expected.
Answer:
1. x = -1.5y
2. 5 (2x-3)
3. p = 4
Step-by-step explanation:
1) Simplifying
7x + 2y + -3x + 4y = 0
Reorder the terms:
7x + -3x + 2y + 4y = 0
Combine like terms: 7x + -3x = 4x
4x + 2y + 4y = 0
Combine like terms: 2y + 4y = 6y
4x + 6y = 0
Solving
4x + 6y = 0
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-6y' to each side of the equation.
4x + 6y + -6y = 0 + -6y
Combine like terms: 6y + -6y = 0
4x + 0 = 0 + -6y
4x = 0 + -6y
Remove the zero:
4x = -6y
Divide each side by '4'.
x = -1.5y
Simplifying
x = -1.5y
2)
Common factor
10x - 15
5 (2x-3)
3) Simplifying
5p = 3p + 8
Reorder the terms:
5p = 8 + 3p
Solving
5p = 8 + 3p
Solving for variable 'p'.
Move all terms containing p to the left, all other terms to the right.
Add '-3p' to each side of the equation.
5p + -3p = 8 + 3p + -3p
Combine like terms: 5p + -3p = 2p
2p = 8 + 3p + -3p
Combine like terms: 3p + -3p = 0
2p = 8 + 0
2p = 8
Divide each side by '2'.
p = 4
Simplifying
p = 4