<span>
with more atmospheric carbon dioxide to convert to plant matter in photosynthesis, place able to grow more. Photosynthesis has no negative effect on Carbon Cycle. Carbon Cycle has a negative effect on photosynthesis.
More Carbon dioxide is not necessarily needed in Photosynthesis. </span>
Hormones glucagon and insulin are produced in the alpha and beta cells respectively in the Islet of Langerhan in the pancreas. They are involved in the negative feedback system of blood glucose regulation in homeostasis.
GLUCAGON: when there is a low blood glucose concentration, the pancreas detect this and alpha cells produce and release glucagon. Glucagon causes the cells of the body to absorb less glucose from the blood. It also inhibits the process of converting glucose into glycogen (glycogenesis) and cause gluconeogenesis (process of converting amino acids/proteins and lipids/fats into glucose) and glycogenolysis (conversion of glycogen to glucose). Finally, glucagon decreases the rate of respiration so less glucose is required.
INSULIN: when blood glucose is high, insulin is released. Insulin binds with cell surface receptors of cells and activates the enzymes attached to the receptor. The enzymes cause a conformational change in the structural proteins that surround glucose transport protein containing vesicles, causing them to move out of the way so the vesicles migrate up to the cell membrane and glucose transport proteins can fuse with it. Thus, more glucose can be taken in by cells. Insulin also cause glycogenesis (converting glucose into glycogen) and inhibits gluconeogenesis and glycogenolysis.
Basically insulin decreases blood glucose concentration (eg. after eating) and glucagon increases it (eg. skipping breakfast in the morning)
Colonized countries are forced to rely on manufactured goods from their mother countries and prevents development of industry.
Answer:
Both electron transport and a proton gradient
Explanation:
The process of oxidative phosphorylation in mitochondria and electron transport chain in photosynthesis undergo chemiosmosis to produce ATP molecules.
Chemiosmosis is a process where the energy utilized by the movement of proton and electrons produces ATP molecules.
Both the processes involve the movement of electrons through electron carriers where the reduced energy is utilized to drive the flow of protons through the plasma membrane. This creates a proton gradient across the plasma membrane which rotates the ATP synthase and converts the ADP molecules into ATP molecules.
Thus, the selected option is correct.