Answer:
Step-by-step explanation:
Forma ordinaria
La ecuación de la parabola de manera ordinaria está dada por:
(1)
Donde:
- (h,k) es la coordenda del vértice, en nuestro caso (0,0) ya que está en el origen.
- (h,k+p) es la coordenda del foco, en nuestro caso (0,1).
Por lo tanto h = 0, k = 0 y p = 1.
Remplazando estos valores en la ecuación de la parábola, tenemos:
(2)
Forma general
La forma general de una parábola esta dada por la siquiente ecuación
Reordenando la ecuación (2) tenemos:
Espero esto te haya ayudado!
A)
Two sides are 8 x 2 = 16 x 2 = 32 sq. in.
Two sides are 11 x 2 = 22 x 2 = 44 sq. in.
Top is 8 x 11 = 88 sq. in.
Total surface area: 32 + 44 + 88 = 164 square inches.
B) Area of a circle = PI x r^2
Area = 63.585
63.585 = PI x r^2
Using 3.14 for PI:
63.585 = 3.14 x r^2
Divide both sides by 3.14:
r^2 = 63.585 / 3.14
r^2 = 20.25
r = √20.25
radius = 4.5 inches.
C)
Diameter = radius x 2
Diameter = 4.5 x 2 = 9 inches.
By doing so, they provide the illusion that the payments are cheaper then 1000 dollars, because 50 looks very small, when in reality it's $100 more then what the mattress is actually worth.
Answer: c. 8!
Step-by-step explanation:
We know , that if we line up n things , then the total number of ways to arrange n things in a line is given by :-
( in words :- n factorial)
Therefore , the number of ways 8 cars can be lined up at a toll booth would be 8! .
Hence, the correct answer is c. 8! .
Alternatively , we also use multiplicative principle,
If we line up 8 cars , first we fix one car , then the number of choices for the next place will be 7 , after that we fix second car ,then the number of choices for the next place will be 6 , and so on..
So , the total number of ways to line up 8 cars = 8 x 7 x 6 x 5 x 4 x 3 x 2 x1 = 8!
Hence, the correct answer is c. 8! .