This is a typical case of a dihybrid cross.
From the phenotype of the offspring, we can conclude that the gene for the red color of the flower and the gene for the axial position of the flower are dominant.
Since we know that the ratio of phenotypes in a dihybrid cross of independently inherited alleles is
9(dominant for both traits)
3(dominant for one trait, recessive for the other)
3(dominant for the second trait, recessive for the other)
1(recessive for both traits)
we can expect 3/16 of the f2 generation to be dominamt for one trait and recessive for the other (red, terminal flowers), or to be precise 190 individuals.
Because Evolution, theory in biology postulating that the various types of plants, animals, and other living things on Earth have their origin in other preexisting types and that the distinguishable differences are due to modifications in successive generations
Answer:
All of the above are true
Explanation:
Organisms possess two types of genome viz; prokaryotic genome and eukaryotic genome. The eukaryotic genome is possessed by cells with a well-defined nucleus, where their genetic material (DNA). The prokaryotic genome, on the other hand, lacks a membrane-bound nucleus. The major organization or content between these two genomes are:
- Prokaryotic genomes generally have less DNA and fewer genes than eukaryotic genomes.
- Prokaryotic genomes have fewer repeated sequences and noncoding, intragenic sequences than eukaryotic genomes.
- Most prokaryotic genomes are contained in one circular chromosome while most eukaryotic genomes are contained on several linear chromosomes.
- In general, eukaryotic genomes contain many introns, repeated sequences, and transposable elements.
Based on this, all of the above options are TRUE
Think about skin cells. Skin cells shed every day, if cell division didn't take place, you would just constantly be losing skin cells.