1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
15

What is m<1 and m<2 A 40 B 50 C 140 D 90

Mathematics
1 answer:
lina2011 [118]3 years ago
3 0

Answer:

<h2><em>here</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em> </em></h2><h2><em>m</em><em>′</em><em><</em><em>1</em><em> </em><em>=</em><em> </em><em>4</em><em>0</em><em>°</em></h2><h2><em>and</em></h2><h2><em> </em><em>m'</em><em><</em><em>2</em><em>=</em><em> </em><em>2</em><em>0</em><em>°</em></h2><h2><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>+</em><em>+</em><em>+</em><em>+</em><em>--------</em></h2><h2><em>sum</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>triangle</em><em> </em><em>is</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em></h2>

You might be interested in
**10 POINTS PLEASE HELP!!**
Sliva [168]

Answer:

The volume increases by a factor or 64. When the cube is dilated, each side length is increased by 4, so the volume is increased by 64.

Step-by-step explanation:

Let L represents the Length of the cube before it's dilated.

Volume, V1 = Length * Length * Length

Volume, V1 = L * L * L

Volume, V1 = L³

When the cube is dilated by a factor of 4.

The new Length becomes 4L.

The new volume is calculated as thus.

New Volume, V2 = 4L * 4L * 4L

New Volume, V2 = 64L³

Dividing the new volume by the old volume gives the increment factor.

Factor = New Volume ÷ Old Volume

Factor = V2/V1

Factor = 64L³/L³

Factor = 64.

Hence, when the sides of the cube is dilated by 4, the volume increases by a factor of 64.

Filling the gap of the given sentence;

"The volume increases by a factor or 64. When the cube is dilated, each side length is increased by 4, so the volume is increased by 64"

8 0
3 years ago
The curved surfaces area of a right circular cylinder is 264 sq. metres and its volume is 924 cu.metres. The diameter and height
Ivenika [448]
You forgot to include the diameter and height so I can’t answer it
6 0
3 years ago
A large waffle cone has a radius of 1.5 in, and a height of 6 in.
Katyanochek1 [597]

Answer:

11.8in^3

Step-by-step explanation:

i just had it

3 0
3 years ago
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
A seven-year medical research study reported that women whose mothers took the drug
podryga [215]

Answer:

Step-by-step explanation:

a) The two populations were i) the pregnant mothers who took the drug ii) the pregnant mothers who did not take the drugs

b) The data must have been obtained in a survey because experiment was not done.

c) 63 out of 3980 developed abnormalities in I case.

Hence out of 1000 abnormalities estimated = \frac{63}{3980} *1000\\=15.829\\

i.e. approximately 16

d) Mothers who did not take drug

(information incomplete)

e) Medical hypothesis testing requires accurate results and hence sample sizes should be very large.

4 0
3 years ago
Other questions:
  • What is the slope of the equation y=5/4x-7/4?<br><br> A. -7<br> B. -7/4<br> C. 5/4<br> D. 5
    10·1 answer
  • Bob is training for a race. Bob ran 14.6 miles away from his home. Then bob ran 9.8 miles toward his home. Finally bob ran 5.3 m
    13·1 answer
  • Spinning a 4-section spinner twice can be described as which type of event?
    11·2 answers
  • Pls help I forgot what a polygon is
    11·2 answers
  • Beth wants to buy a new dress. The one she likes has an original price of $150 and is now on sale for $90. What is the percent d
    15·2 answers
  • Jesse is building a spice rack. He cuts three lengths of wood from a 90-centimeter board. The first length is 23.5 centimeters.
    10·1 answer
  • |5x + 4| - 10 = -6<br><br> HELP SOLVE THIS FOR ME !!
    7·2 answers
  • When a shape is reflected which of the properties change
    8·1 answer
  • Solve the problem. A retired couple has $120,000 to invest to obtain annual income. They want some of it invested in safe Certif
    8·1 answer
  • Show all your work multiplying the polynomials above:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!