9 because it’s skip counting by 3 and 2
Answer:
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
The expectation, E(3y +2) and variance, Var(3y+2) of the random variable are 13.4 and 19.44 respectively
<h3>How to determine the expectation and variance of a random variable?</h3>
The expectations or expected value E(y) of a random variable can be thought of as the “average” value of the random variable. It is also called its mean
By definition:
if y = ax + b
then E(y) = aE(x) + b
where a,b = constant
The variance V(y) of a random variable is the measure of spread for the distribution of a random variable that determines the degree to which the values of a random variable differ from the expected value
By definition
if y = ax + b
V(b) = 0
V(y) = V(ax) + V(b)
= a²V(x) + 0
where a,b = constant
Given: E(y)= 3.8 and Var(y)= 2.16
Calculate E( 3y +2) and Var( 3y+ 2)
E(3y +2) = 3E(y) + 2 since E(y) = 3.8
= 3×3.8 + 2
= 11.4+2
= 13.4
Var(3y+2) = 3²Var(y) + 0
= 9×2.16
= 19.44
Therefore, E(3y +2) is 13.4 and Var(3y+2) is 19.44
Learn more about expectations and variance on:
brainly.com/question/15858152
#SPJ1
Answer:
(x, y) = (-1.4, 1.6)
Step-by-step explanation:
The graph shows the solution pretty clearly. It seems no estimation is required.