1.) Word form: two hundred thirty-six and seventy-seven thousandths
Expanded notation: 200
+ 30
+ 6 + 0.0 + 0.07 + 0.007
There are no underlines?
3.) tenth: 7.3 hundredth: 7.31 thousandth: 7.305 whole number: 7
4.) Estimate: 10,400
Answer is 10,417
Your answer should be 7/12
A. The point estimate of μ1 − μ2 is calculated using the value of x1 - x2, therefore:
μ1 − μ2 = x1 – x2 =
7.82 – 5.99
μ1 − μ2 = 1.83
B. The formula for
confidence interval is given as:
Confidence interval
= (x1 –x2) ± z σ
where z is a value
taken from the standard distribution tables at 99% confidence interval, z =
2.58
and σ is calculated
using the formula:
σ = sqrt [(σ1^2 /
n1) + (σ2^2 / n2)]
σ = sqrt [(2.35^2 /
18) + (3.17^2 / 15)]
σ = 0.988297
Going back to the
confidence interval:
Confidence interval
= 1.83 ± (2.58) (0.988297)
Confidence interval
= 1.83 ± 2.55
Confidence interval
= -0.72, 4.38
It would be 7.45 since the -3.05 and the -9.5 together would equal -12.55 which subtracted from 20 would equal 7.45
Answer:
They are only equal on day 0, both having 10 population.
Step-by-step explanation:
Given the bacteria on the counter is initially measured at 5 and doubles every 3 days we can generate the following geometric equation:

Given the bacteria on the stove is measured at 10 and doubles every 4 days we can create another equation:

To find how many days it will take for the bacteria population to equal the same lets set both equations equal to eachother:

Divide both sides by 10

Since both exponents have the same base we can set the exponents equal to eachother and solve for x:

Multiply both sides by 3 to isolate x on the left side

Multiply both sides by 4 to remove fraction

Subtract 3x to isolate x on the left side

Plug x into one of our original equations

Solve
