<span>Which expression is equivalent to x + y + x + y + 3(y + 5)? 2x + 5y + 5 2x + y + 30 2x + 5y + 15 2x + 3y + 10
</span>
![x + y + x + y + 3(y + 5)= \\ \\ x+y+x+y+3y+15= \boxed{ 2x+5y+15 }](https://tex.z-dn.net/?f=%20x%20%2B%20y%20%2B%20x%20%2B%20y%20%2B%203%28y%20%2B%205%29%3D%20%20%5C%5C%20%20%5C%5C%20x%2By%2Bx%2By%2B3y%2B15%3D%20%20%20%5Cboxed%7B%202x%2B5y%2B15%20%7D%20)
<span>
</span>
Step-by-step explanation:
solve for surface area
A=6a^2
a=edge
Answer:
Min:3 Q:66-9 Med:9 Q3:10-14 Max19
Answer:
706.95in²
Step-by-step explanation:
This problem bothers on the mensuration of solid shapes, a cylinder
Step one
The trash can has a cylindrical shape
The distance from the center to the edge is the radius r= 15in
Step two
Area of top (circular ) = πr²
A= 3.142*15²
A= 3.142*225
A= 706.95in²
The point-slope form:
![y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}](https://tex.z-dn.net/?f=y-y_1%3Dm%28x-x_1%29%5C%5C%5C%5Cm%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D)
We have the points (-5, 15) and (20, 25). substitute:
![m=\dfrac{25-15}{20-(-5)}=\dfrac{10}{25}=\dfrac{2}{5}\\\\y-15=\dfrac{2}{5}(x-(-5))\\\\y-15=\dfrac{2}{5}(x+5)\qquad|\text{use distributive property}\\\\y-15=\dfrac{2}{5}x+2\qquad|\text{add 15 from both sides}\\\\y=\dfrac{2}{5}x+17\qquad|\text{multiply both sides by 5}\\\\5y=2x+85\qquad|\text{subtract 2x from both sides}\\\\-2x+5y=85\qquad|\text{change the signs}\\\\2x-5y=-85](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7B25-15%7D%7B20-%28-5%29%7D%3D%5Cdfrac%7B10%7D%7B25%7D%3D%5Cdfrac%7B2%7D%7B5%7D%5C%5C%5C%5Cy-15%3D%5Cdfrac%7B2%7D%7B5%7D%28x-%28-5%29%29%5C%5C%5C%5Cy-15%3D%5Cdfrac%7B2%7D%7B5%7D%28x%2B5%29%5Cqquad%7C%5Ctext%7Buse%20distributive%20property%7D%5C%5C%5C%5Cy-15%3D%5Cdfrac%7B2%7D%7B5%7Dx%2B2%5Cqquad%7C%5Ctext%7Badd%2015%20from%20both%20sides%7D%5C%5C%5C%5Cy%3D%5Cdfrac%7B2%7D%7B5%7Dx%2B17%5Cqquad%7C%5Ctext%7Bmultiply%20both%20sides%20by%205%7D%5C%5C%5C%5C5y%3D2x%2B85%5Cqquad%7C%5Ctext%7Bsubtract%202x%20from%20both%20sides%7D%5C%5C%5C%5C-2x%2B5y%3D85%5Cqquad%7C%5Ctext%7Bchange%20the%20signs%7D%5C%5C%5C%5C2x-5y%3D-85)
Answer:
point-slope form: ![y-15=\dfrac{2}{5}(x+5)](https://tex.z-dn.net/?f=y-15%3D%5Cdfrac%7B2%7D%7B5%7D%28x%2B5%29)
slope-intercept form: ![y=\dfrac{2}{5}x+17](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B2%7D%7B5%7Dx%2B17)
standard form: ![2x-5y=-85](https://tex.z-dn.net/?f=2x-5y%3D-85)