Outer hair cells change their axial dimensions in response to electrical stimulation.
What is basilar membrane motion?
Hair cell stereocilia move as a result of the basilar membrane's movement. The tectorial membrane and the hair cells, which are connected to the basilar membrane, move along with it when it moves, and the stereocilia bend in response to the relative motion of the tectorial membrane.
The hair cells that are linked to the auditory nerve fibers are stimulated by the basilar membrane's movement. While the outside hair cells actively affect the basilar membrane's vibrations, the inner hair cells convert hydromechanical vibration into action potentials.
With each sound cycle, the intracellular voltage of the outer hair cells varies, causing them to lengthen and contract. This increases the organ of Corti's vibration, enabling exceptionally high hearing sensitivity and frequency selectivity.
To learn more about tectorial membrane click on the link below:
brainly.com/question/28251599
#SPJ4
Gymnosperms and angiosperms have flowers! ferns and bryophytes
Answer:
A scheme of recombinational repair in E. coli. RecFOR activities license RecA polymerization of daughter-strand gaps, whereas the RecBC enzyme does the same for double-strand breaks. After the RecA-catalyzed homologous strand exchange enables one-strand repair (excision repair) to fix the irregularities in the individual DNA strands, RuvABC or RecG activities remove the spent RecA filaments and Holliday junctions from the repair intermediate, freeing the participating chromosomes.
Explanation:
Enzymes of known biochemical activities are shown. The presynaptic steps result in the formation of a RecA filament. At gaps, this step requires RecJ, RecF, RecO, and RecR: the 5′ ssDNA exonuclease RecJ enlarges the ssDNA region (possibly with the help of various helicases, as no specific helicase is required for gap repair); RecF, RecO, and RecR promote RecA binding to SSB-coated DNA. At dsDNA ends, RecBCD (AddAB in B. subtilis) degrades DNA until it encounters a χ site; its helicase-nuclease activity is then modified to produce a 3′-ended ssDNA, to which it loads RecA. The synaptic step (homology search and strand exchange) is always performed by RecA and results in the formation of a Holliday junction (X structure). The postsynaptic steps are the migration and the resolution of Holliday junctions. Migration can be performed by RuvAB or by RecG, and resolution is made by RuvC (RecU in B. subtlis; RuvC forms a complex with RuvAB in E. coli). In addition, RecBCD-mediated recombination is always coupled with PriA-dependent replication restart. Antirecombinases are not shown: UvrD and MutLS prevent by different means the strand exchange reaction. In recBC mutants, the presynaptic steps of dsDNA end repair can be catalyzed by the helicase RecQ and the gap repair proteins RecJ and RecFOR, a reaction that is prevented by SbcB (and SbcCD) nucleases.

That would be animals getting isolated into different groups in different locations. These animals would have to breed AND adapt to that location, otherwise they will become extinct. When each species adapts and breeds to agree with a different location, that would be called speciation.