Answer: 120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
Step-by-step explanation:
=24x(x^2 + 1)4(x^3 + 1)5 + 42x^2(x^2 + 1)5(x^3 + 1)4
Remove the brackets first
=[(24x^3 +24x)(4x^3 + 4)]5 + [(42x^4 +42x^2)(5x^3 + 5)4]
=[(96x^6 + 96x^3 +96x^4 + 96x)5] + [(210x^7 + 210x^4 + 210x^5 + 210x^2)4]
=(480x^6 + 480x^3 + 480x^4 + 480x) + (840x^7 + 840x^4 + 840x^5 + 840x^2)
Then the common:
=[480(x^6 + x^3 + x^4 + x) + 840(x^7 + x^4 + x^5 + x^2)]
=120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
I'm not sure about the formula.
But since 38/2=19
19-2=17
Linda is 17 years old.
a possible formula could be:
L=38/2-2
Answer:4
Step-by-step explanation:
log₂[log₂(√4x)] = 1
log₂2 =1
So we replace our 1 with log₂2
log₂[log₂(√4x)] = log₂2
log₂ on bothside will cancel each other.
We will be left with;
[log₂(√4x)] = 2
log = power of exponential
√4x = 2²
√4x = 4
Square bothside
(√4x)² = 4²
4X = 16
Divide bothside by 4
4x/4 = 16/4
x = 4
The variables have a negative association/correlation, because when one value increases (ex: x) the other decreases (see y)
If you would put a line through the dataset most of the points would be quite a bit off the line so the association is only moderate and not strong
so the answer is it is a "moderate negative association"
Cool You have a good software! I’m using this space so that you can mark the next person brainliest!