Answer:
y = (x - 6)(x + 1)
Step-by-step explanation:
Use factored form, y = a(x - r1)(x - r2), where r1 and r2 are roots.
Since the solutions are 6 and -1, plug in these numbers:
y = (x - 6)(x + 1)
So, the factored equation is y = (x - 6)(x + 1)
Answer:
45+30+90=165 but it should be 180
if you wrote in 45 on the right then that is incorrect and should be 60. If that is how the task is then it can't be solved.
<h2>
Answer:</h2><h2>
122</h2>
Step-by-step explanation:
<h2> That one was easy it is right just did it on edgenuity</h2>
Answer with Step-by-step explanation:
Given

Differentiating both sides by 'x' we get

Now we know that for an increasing function we have
![f'(x)>0\\\\14cos(2x)+7cos(x)>0\\\\2cos(2x)+cos(x)>0\\\\2(2cos^{2}(x)-1)+cos(x)>0\\\\4cos^{2}(x)+cos(x)-2>0\\\\(2cos(x)+\frac{1}{2})^2-2-\frac{1}{4}>0\\\\(2cos(x)+\frac{1}{2})^2>\frac{9}{4}\\\\2cos(x)>\frac{3}{2}-\frac{1}{2}\\\\\therefore cos(x)>\frac{1}{4}\\\\\therefore x=[0,cos^{-1}(1/4)]\cup [2\pi-cos^{-1}(1/4),2\pi ]](https://tex.z-dn.net/?f=f%27%28x%29%3E0%5C%5C%5C%5C14cos%282x%29%2B7cos%28x%29%3E0%5C%5C%5C%5C2cos%282x%29%2Bcos%28x%29%3E0%5C%5C%5C%5C2%282cos%5E%7B2%7D%28x%29-1%29%2Bcos%28x%29%3E0%5C%5C%5C%5C4cos%5E%7B2%7D%28x%29%2Bcos%28x%29-2%3E0%5C%5C%5C%5C%282cos%28x%29%2B%5Cfrac%7B1%7D%7B2%7D%29%5E2-2-%5Cfrac%7B1%7D%7B4%7D%3E0%5C%5C%5C%5C%282cos%28x%29%2B%5Cfrac%7B1%7D%7B2%7D%29%5E2%3E%5Cfrac%7B9%7D%7B4%7D%5C%5C%5C%5C2cos%28x%29%3E%5Cfrac%7B3%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%5Ctherefore%20cos%28x%29%3E%5Cfrac%7B1%7D%7B4%7D%5C%5C%5C%5C%5Ctherefore%20x%3D%5B0%2Ccos%5E%7B-1%7D%281%2F4%29%5D%5Ccup%20%5B2%5Cpi-cos%5E%7B-1%7D%281%2F4%29%2C2%5Cpi%20%5D)
Similarly for decreasing function we have
![[tex]f'(x)](https://tex.z-dn.net/?f=%5Btex%5Df%27%28x%29%3C0%5C%5C%5C%5C%5Ctherefore%20cos%28x%29%3C1%2F4%5C%5C%5C%5Cx%3Ccos%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B4%7D%29%5C%5C%5C%5Cx%3D%5Bcos%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B4%7D%29%2C2%5Cpi%20-cos%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B4%7D%29%5D)
Part b)
To find the extreme points we equate the derivative with 0

Thus point of extrema is only 1.