Answer: 0.1457
Step-by-step explanation:
Let p be the population proportion.
Given: The proportion of Americans who are afraid to fly is 0.10.
i.e. p= 0.10
Sample size : n= 1100
Sample proportion of Americans who are afraid to fly =
We assume that the population is normally distributed
Now, the probability that the sample proportion is more than 0.11:
![P(\hat{p}>0.11)=P(\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}>\dfrac{0.11-0.10}{\sqrt{\dfrac{0.10(0.90)}{1100}}})\\\\=P(z>\dfrac{0.01}{0.0090453})\ \ \ [\because z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}} ]\\\\=P(z>1.1055)\\\\=1-P(z\leq1.055)\\\\=1-0.8543=0.1457\ \ \ [\text{using z-table}]](https://tex.z-dn.net/?f=P%28%5Chat%7Bp%7D%3E0.11%29%3DP%28%5Cdfrac%7B%5Chat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%3E%5Cdfrac%7B0.11-0.10%7D%7B%5Csqrt%7B%5Cdfrac%7B0.10%280.90%29%7D%7B1100%7D%7D%7D%29%5C%5C%5C%5C%3DP%28z%3E%5Cdfrac%7B0.01%7D%7B0.0090453%7D%29%5C%20%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7B%5Chat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%20%5D%5C%5C%5C%5C%3DP%28z%3E1.1055%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1.055%29%5C%5C%5C%5C%3D1-0.8543%3D0.1457%5C%20%5C%20%5C%20%5B%5Ctext%7Busing%20z-table%7D%5D)
Hence, the probability that the sample proportion is more than 0.11 = 0.1457
Answer:
$231.67
Step-by-step explanation:
how you need to divide 589 to 3 and than you get 231.67
Answer:
The final price would be $26.95
Step-by-step explanation:
Answer:
C) Reflection about the origin
Step-by-step explanation:
DE points to the right and slightly down. D'E' points to the left and slightly up. The segments are parallel, not perpendicular, so represent a rotation of 180°, not 90°. If the figure were subject only to translation, these segments would point in the same direction.
The transformation is a reflection about the origin (C). (This is equivalent to a rotation of 180°.)
Answer:
The realtionship is a function
Step-by-step explanation: