1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
5

Sorry for asking a lot but could you all help me with 15-23? It would mean a lot. I stayed up till 4:00 am and got no sleep so I

can’t focus

Mathematics
1 answer:
irinina [24]3 years ago
8 0

Answer:

52

Step-by-step explanation:

You might be interested in
Using slope formula find the slope of the line through the points 0,0 and 3,12 use the pencil and paper
sertanlavr [38]

Answer:

wouldn't it be 3,12.....................

7 0
3 years ago
Read 2 more answers
A student received a 75% on an exam. If there were 20 questions on the exam, which ratio would show the number of questions answ
Agata [3.3K]
75%=¾
¾*20=15

He answered 15 questions correctly.
6 0
3 years ago
Read 2 more answers
Donnie has18 melons. Each melon weighs 3 pounds. How many pounds of melons does Donnie have in all? A. 6 pounds B. 11 pounds C.
pentagon [3]
18 x 3 = 54. So the correct answer is D. 54 pounds.
4 0
4 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
The graph shows the value of a certain model of car compared with it's age. which statement is true?
s2008m [1.1K]

The only true statement is A:

"The data show a negative linear relationship."

<h3></h3><h3>Which statement is true?</h3>

On the graph, we can see how the car's vale decreases almost linearly with the age of the car.

Where the response variable would be the one on the y-axis, which is the car's value.

For that linear behavior, we know that there is a correlation coefficient different than zero. So options B, C, and D are false.

Finally, we already saw the linear behavior (decreasing, so the slope is negative). Then we conclude that the only true statement is A.

If you want to learn more about data sets:

brainly.com/question/4219149

#SPJ1

6 0
2 years ago
Other questions:
  • Express the number in scientific notation.<br><br> 26.3
    11·1 answer
  • The fastest speed a table tennis ball has been hit about 13.07 times as fast as the speed for the fastest swimming. What is the
    5·1 answer
  • What is the equation of the circle with a radius of 5 and center of (2, 3)?
    9·1 answer
  • Please Please Help Me On This Question Mathematicians!!!!
    5·1 answer
  • Is the function cot t positive or negative in Quadrant II
    11·1 answer
  • The temperature rose 2°C each hour for 6 h. Use integers to find the total change in<br> temperature
    11·1 answer
  • Compute the value of the discriminant and give the number of real solutions of the quadratic equation.
    10·1 answer
  • The length of a spring varies directly with the mass of an object that is attached to it. When a 30-gram object is attached, the
    6·1 answer
  • Mike is adding 145 and 237. his work is shown. how can mike find the sum?
    10·1 answer
  • For what value of mc009-1 is the function one-to-one?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!