Seeds have cotyledons from where they can draw their nutrient in their early stages of development. Pollens must draw their nutrient from their environment from the start.
Seeds have an outer coating (testa) that protects the embryo and enable it to remain dormant in the soil until right conditions for growth set forth
Seeds have a fully developed embryo that can begin to grow immediately there are right conditions. However, pollen has a single cell instead of an embryo, which must undertake cell division and specialization before beginning to germinate
You have given no demonstration based on your microscopic investigation so I cant tell you the answer to the question. I will try to help you by elaborating how to decipher..
Three terms hypotonic, hypertonic and isotonic are used when referring to two solutions separated by a selectively permeable membrane.
The hypertonic solution has a great concentration of OAS than the solution on the other side of the membrane. It is described, therefore, as having a great osmolarity. The hypotonic solution has a lower concentration of OAS, or osmolarity, than the solution on the other side of the membrane. When the two solutions are at an equilibrium, the concentration of OAS being equal on both sides of the membrane, the osmolarities are equal and are said to be isotonic.
The net flow of water is from the hypotonic to the hypertonic solution. When the solutions are isotonic, there is no net flow of water across the membrane.
If red blood cells are placed in a solution with a lower solute concentration than is found in the cells, water moves into the cells by osmosis, causing the cells to swell; such a solution is hypotonic to the cells.
So, look at the information and data you have on your microscopic investigation and use these guidelines to tell you which is which.
A magnitude-5.0 earthquake releases about <u>32</u> times more energy than a 4.0 magnitude earthquake.
Explanation:
The characteristics of an earthquake are mostly measured through its magnitude and intensity.
A earthquake will generate seismic energy waves which will spread outwardly on the earth's surface in all directions.
The magnitude of an earthquake is the quantitative measure of the amount of energy released during a seismic activity or an earthquake.
The intensity of an earthquake is a descriptive measure of the severity or the strength of the earthquake based on the impact it has done on the earth’s surface, human population, and other man-made structures on the earth and the potential danger.
The magnitude measured using a seismograph is expressed as a whole number or a decimal fraction like 5.7, 4.5 etc. The severity of the magnitude is compared against the standard Richter’s Scale.
The intensity is denoted in Roman numerals and compared against various scales like Mercalli or Rossi-Forel Scales.
Based on the logarithmic application of the scale, each whole number increase in an earthquake’s magnitude depicts a ten-fold increase in severity of the amplitude of the earthquake as measured on the seismogram and denotes about 32 times increased energy release
.
Answer: Genetic Variation
Explanation: It is the presence of differences in sequences of genes between individual organisms of a species.