Answer: 68
Step-by-step explanation:
Simplifying the expression:
= 8a² + 6b + 9a² + 9b² + 3b
Collect like terms
= 8a² + 9a² + 6b + 3b + 9b²
= 17a² + 9b + 9b²
We then substitute a=2,b=−1.
= 17a² + 9b + 9b²
= 17(2)² + 9(-1) + 9(-1)²
= 68 -9 + 9
= 68
Answer: D.) 
Step-by-step explanation: We are given an exponential function f(x).
g(x) is an exponential function that is being reflected across y-axis.
According to rules of transformations y=f(-x).
That is variable x is being multiplied by a negative sign.
In the given options
, the variable x is being multiplied by a negative sign.
Therefore, correct option is D option.
(a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2+2ab+2b^2 =The answer
(a + b)^2 = a^2 + 2ab + b^2 => square of sums
(a - b)^2 = a^2 - 2ab + b^2 => square of deference
and of course one of most important ones:
a^2 - b^2 = (a - b)(a + b) => difference of squares
Best Answer: (a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2 + 2ab + 2b^2
a^4 + 4b^4 => i.e. 4a^2b^2 ,
a^4 + 4a^2b^2 + 4b^4 => a^2 + 2ab + b^2 = (a + b)^2, if : a = a^2 , b = 2b^2:
(a^2 + 2b^2)^2 = a^4 + 4a^2b^2 + 4b^4 => We can't add or subtract the value to the expression.
a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2 =>
(a^2 + 2b^2)^2 - 4a^2b^2 =>
(a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab) =>
(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)
Greetings!
209÷47= 4.45, but you cant mos part of a lawn, so he needs to mow 5 lawns