Can you please take a picture of each pair of points
So what am I supposed to do with this?. Answer’s already given
Elimination method:
4m = n + 7
3m + 4n + 9 = 0
<em>First, let's get the equations in the same form.</em>
4m - n - 7 = 0
3m + 4n + 9 = 0
<em>Now let's make multiply the first equation by 4 so we can eliminate n.</em>
16m - 4n - 28 = 0
+3m + 4n + 9 = 0
<em>Now we can add the equations.</em>
16m + 3m - 4n + 4n - 28 + 9 = 0
19m + 0n - 19 = 0
19m - 19 = 0
19m = 19
<em>m = 1</em>
<em>Now we put m back into one (or both) of the original equations.</em>
4(1) = n + 7
4 = n + 7
<em>n = -3</em>
<em>If you plug m into the other equation, you get the same result.</em>
<em />
Substitution method:
4m = n + 7
3m + 4n + 9 = 0
<em>With this method, we plug one of the equations into the other one. I'm going to use m in the second equation as a substitute for m in the second equation.</em>
3m + 4n + 9 = 0
3m = -4n - 9
m = (-4/3)n - 3
<em>Now I can substitute the right side into the first equation like so:</em>
4[(-4/3)n - 3] = n + 7
(-16n)/3 - 12 = n + 7
(-16n)/3 = n + 19
-16n = 3(n + 19)
-16n = 3n + 57
0 = 16n + 3n + 57
0 = 19n + 57
0 = 19n/19 + 57/19
0 = n + 3
<em>-3 = n</em>
<em>And then we put that back into one of the original equations.</em>
4m = n + 7
4m = -3 + 7
4m = 4
<em>m = 1</em>
Hopefully you learned something from this.
Answer:
Yes when reviewing proofs to the hormone receptor levels for men, and when reviewing proofs of ovarian and menopausal changes in women.
Overall, the prevalence of hypertension was higher in men (34.6%) than in women (30.8%). However, after the age of 60 years, hypertension was more prevalent in females than in males. Regardless of sex, the older the participants were, the more likely they were to have hypertension