1. Find the median of the following data : <br>
1) 3,1,5,6,3,4,5 <br>
2) 3,1,5,6,3,4,5,6
juin [17]
Answer:
a ) The first step - arrange them in ascending or descending.
1,3,3,4,5,5,6
then median is to find the middle so -
the middle of this is "<u>4</u>" (there are odd numbers of numbers)
b) the first step- - arrange them in ascending or descending.
1,3,3,4,4,4,6,6
then median is to find the middle so -
here the middle is 4 and 4 ( there are even numbers of numbers)
so you find average -
4+4/2 = <u>4 </u>
<u />
<u>these are the answers I guess. </u>
Converting 653 to base 10.
6*102=600
5*101=50
3*100=3
Adding all to get Ans=65310
Step2 converting 65310 to 7
The equation calculation formula for 65310 number to 7 is like this below.
7|653
7|93|2
7|13|2
7|1|6
7|1|1
Ans:16227
Answer:
1 55
2 130
3 15
Step-by-step explanation:
Answer:
a) -7/9
b) 16 / (n² + 15n + 56)
c) 1
Step-by-step explanation:
When n = 1, there is only one term in the series, so a₁ = s₁.
a₁ = (1 − 8) / (1 + 8)
a₁ = -7/9
The sum of the first n terms is equal to the sum of the first n−1 terms plus the nth term.
sₙ = sₙ₋₁ + aₙ
(n − 8) / (n + 8) = (n − 1 − 8) / (n − 1 + 8) + aₙ
(n − 8) / (n + 8) = (n − 9) / (n + 7) + aₙ
aₙ = (n − 8) / (n + 8) − (n − 9) / (n + 7)
If you wish, you can simplify by finding the common denominator.
aₙ = [(n − 8) (n + 7) − (n − 9) (n + 8)] / [(n + 8) (n + 7)]
aₙ = [n² − n − 56 − (n² − n − 72)] / (n² + 15n + 56)
aₙ = 16 / (n² + 15n + 56)
The infinite sum is:
∑₁°° aₙ = lim(n→∞) sₙ
∑₁°° aₙ = lim(n→∞) (n − 8) / (n + 8)
∑₁°° aₙ = 1