Answer:
6 soda's will cost $9.
Step-by-step explanation:
4 soda's costs $6.
Find the amount 2 soda's will cost. Divide 2 from both sides.
(4)/2 = 2
(6)/2 = 3
2 soda's will cost $3.
Now, solve for the cost for 6 soda's by multiply 3 to both sides.
2(3) = 6
3(3) = 9
6 soda's will cost $9.
~
Answer:
$5564.87
Step-by-step explanation:
We are to determine the difference between the future values of each investment
The formula for calculating future value:
FV = P (1 + r)^mn
FV = Future value
P = Present value
R = interest rate
N = number of years
m = number of compounding
Madeline
P = Present value = 51,000
R = interest rate = 0.06125 / 365 = 0.000168
N = number of years = 13
m = number of compounding = 365
51,000 x (1.000168)^4745 = 113,070.20
Harper
51,000 x (1.004792)^156 = 107,505.33
Difference = 113,070.20 - 107,505.33 = $5,564.87
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
A
Step-by-step explanation:
The line is divided into 9 parts between 1 and 2
A is situated 6 parts of the way between 1 and 2, that is
=
← cancelling by 3
Hence
A = 1 +
= 1
→ A