"1 indicating a coupon and all other outcomes indicating no coupon"
Probability is (number of successful outcomes) / (number of possible outcomes)
Theoretical Probability of rolling a 1: 1/8
Experimental Probability of using coupons: 4/48 = 1/12
So, the experimental probability of a customer using a coupon (that is, 1/12) is smaller than the theoretical probability of rolling a 1 (that is, 1/8).
Answer:
1200
Explanation:
Order does not matter, if we said xyz order, it would still not make a difference if it was zyx or yzx hence we use the combination formula:
nCr = n! / r! * (n - r)!
where n= total number of items
r= number of items chosen at a time
Combinations are used when the order of events do not matter in calculating the outcome.
We calculate using the formula:
(30×20×12)÷3!=1200
There are therefore 1200 ways for the three distinct items to not be in same row or column
Answer:
5 to 18 ; 1 to 225
Step-by-step explanation:
BEACAUSE IT WAS FROM USA TEST PREP AND GOT IT RIGHT
Answer:
its A im pretty sure
Step-by-step explanation: