Answer:
sin 3 θ = 3 sin θ - 4 sin³θ
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given sin 3 θ
= sin ( 2θ + θ )
apply trigonometric formula
<em> sin ( A + B) = sin A cos B + cos A sin B </em>
<em> sin 2 A = 2 sin A cos B</em>
<em> Cos 2 A = 1 - 2 sin² A </em>
<em> cos ² A - sin ² A = 1</em>
<u><em>Step(ii):</em></u>-
sin 3 θ = sin ( 2θ + θ )
= sin 2θ cosθ + cos2θ sin θ
= 2 sin θ cos θ cos θ +( 1 - 2 sin² θ )sin θ
= 2 sin θ (cos² θ ) + sin θ- 2 sin³ θ
= 2 sin θ ( 1- sin²θ) + sin θ- 2 sin³ θ
= 2 sin θ - 2sin³θ + sin θ- 2 sin³ θ
= 3 sin θ - 4 sin³θ
<u><em>Final answer</em></u> :-
sin 3 θ = 3 sin θ - 4 sin³θ
Not sure, but I would rather not leave this question blank. Please refer to the picture to help
Answer:
the initial height
Step-by-step explanation:
given the height is represented by the function
f(t) = - 16t² + 40t + 3
Then the initial height is when t = 0, that is
f(0) = 0 + 0 + 3 = 3 ← initial height
Answer:
dsssssssssssssssss
Step-by-step explanation:
Answer:
r ≅ 3.00
Step-by-step explanation:
First we need to get the formula for finding the volume of sphere. The formula is:

Now to find for the radius, we need to input the value that we know into the formula.

Now we multiply both sides by 3/4.


Now divide both sides by π.


To find r, we finally get the cube root of both sides.
![\sqrt[3]{r^{3} }= \sqrt[3]{27.01}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Br%5E%7B3%7D%20%7D%3D%20%5Csqrt%5B3%5D%7B27.01%7D)
r ≅ 3.00