1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
2 years ago
11

State the Newton 2nd law of motion and also prove that F= ma​

Physics
1 answer:
saw5 [17]2 years ago
3 0

Explanation:

F = ma is the formula of Newton's Second Law of Motion. Newton's Second Law of Motion is defined as Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration.

...

You might be interested in
1:a boy 2 a girl pulling a heavy crate at the same time w/10 unite of force each.What is the net force acting on the object
vovangra [49]
The maximum magnitude of the net force on the box is 20 N, which is only possible if the boy and the girl pull the box together in the same direction, horizontally and parallel to the ground.
The minimum magnitude of the net force on the box is 0 N, which will occur when the boy and the girl pull the box together in the parallel but opposite direction.
If either of them pulls at an angle from the horizontal, then the magnitude of the net force will be between 0 N and 20 N.
8 0
3 years ago
Please Help!<br><br><br>What is inertia? What does inertia depend on?
Lemur [1.5K]
Inertia is that quantity which depends solely upon mass. The more mass, the more inertia. Momentum is another quantity in Physics which depends on both mass and speed.
8 0
2 years ago
A horizontal spring-mass system has low friction, spring stiffness 160 N/m, and mass 0.3 kg. The system is released with an init
anygoal [31]

Answer:

(a) 0.38 m

(b) 2.78 m/s

(c) 0.11 watt

Explanation:

mass, m = 0.3 kg

spring constant, K = 160 N/m

initial compression, d = 12 cm = 01.2 m

initial speed, u = 3 m/s

(a) Let the maximum stretch is y.

Use conservation of energy

Initial potential energy + initial kinetic energy = final potential energy

0.5 x K x d² + 0.5 x m x u² = 0.5 x K x y²

160 x 0.12 x 0.12 + 0.3 x 0.12 x 0.12 = 160 x y²

2.304 + 0.00432 = 160 y²

y = 0.38 m

y = 38 cm

(b) Let v is the maximum speed.

The speed is maximum when the stretch in the spring is zero, so by use of conservation of energy

Initial potential energy + initial kinetic energy = final kinetic energy

0.5 x K x d² + 0.5 x m x u² = 0.5 x m x v²

160 x 0.12 x 0.12 + 0.3 x 0.12 x 0.12 = 0.3 x v²

2.304 + 0.00432 = 0.3 v²

v = 2.78 m/s

(c) The time period of the spring mass system is given by

T=2\pi\sqrt{\frac{m}{K}}

T=2\pi\sqrt{\frac{0.3}{160}}

T = 0.272 second

Energy dissipated per cycle = 0.03 J

Power, P = 0.03 / 0.272 = 0.11 Watt

5 0
3 years ago
A roller coaster car is elevated to a height of 30 m and released from rest to roll along a track. At a certain time T it is at
Naddika [18.5K]

Explanation:

Initial energy = final energy + work done by friction

PE = PE + KE + W

mgH = mgh + 1/2 mv² + W

(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v² + 25000

v = 22.1 m/s

Without friction:

PE = PE + KE

mgH = mgh + 1/2 mv²

(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v²

v = 23.4 m/s

4 0
2 years ago
Using Gauss's law, calculate the electric field at a point distance s from a long wire bearing uniform charge density. i need he
11111nata11111 [884]

Answer:

E = 2k  \frac{\lambda}{ r}

Explanation:

Gauss's law states that the electric flux equals the wax charge between the dielectric permeability.

We must define a Gaussian surface that takes advantage of the symmetry of the problem, let's use a cylinder with the faces perpendicular to the line of charge. Therefore the angle between the cylinder side area has the same direction of the electric field which is radial.

            Ф = ∫ E . dA = E ∫ dA = q_{int} /ε₀

tells us that the linear charge density is

            λ = q_ {int} /l

            q_ {int} = l λ

we substitute

            E A = l λ /ε₀

is area of ​​cylinder is

           A = 2π r l

we substitute

            E = \frac{ l \ \lambda}{ \epsilon_o \ 2\pi  \ r \ l }

             E = \frac{\lambda}{ 2\pi  \epsilon_o \ r}

the amount

            k = 1 / 4πε₀

            E = 2k  \frac{\lambda}{ r}

5 0
2 years ago
Other questions:
  • If two wires run parallel and the current passes through both wires in the same direction, which happens to the wires?
    9·1 answer
  • How many protons and neutrons are present in an atom of 3919k? express your answer as integers separated by a comma?
    7·1 answer
  • The chief by 3 3/4 kg of Apple's 7 1/4 kilograms of peers and 10 1/8 kilograms with orange about how many kilograms of fruit did
    7·2 answers
  • How many years does one mouth symbolize on the cosmic calendar
    8·1 answer
  • Which of the following is not an assumption that scientists must make about the natural world
    9·2 answers
  • What is the effect of the absorption of infrared energy on matter?
    13·1 answer
  • Sami pops a helium balloon at a birthday party. What will happen to the particles of helium that were in the balloon?
    15·1 answer
  • Matthew is waterskiing. As the boat starts moving, he is at an angle of 8.0° to the right of the boat. The boat applies 250 newt
    6·1 answer
  • A substance that produces H+ ions in solution is a.
    10·1 answer
  • I’ll give brainliest
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!