Answer:
- <em>As the temperature of a sample of matter is increased, the average kinetic energy of the particles in the sample </em><u>increase</u><em>.</em>
Explanation:
The <em>temperature</em> of a substance is the measure of the <em>average kinetic energy </em>of its partilces.
The temperature, i.e. how hot or cold is a substance, is the result of the collisions of the particles (atoms or molecules) of matter.
The kinetic theory of gases states that, if the temperature is the same, the average kinetic energy of any gas is the same, regardless the gas and other conditions.
This equation expresses it:
Where Avg KE is the average kinetic energy, R is the universal constant of gases, N is Avogadro's constnat, and T is the temperature measure in absolute scale (Kelvin).
As you see, in that equation Avg KE is propotional to T, which means that as the temperature is increased, the average kinetic energy increases.
Answer:
Here's what I get
Explanation:
1. Balanced equation
HQ⁻ + CH₃-Br ⟶ HQ-CH₃ + Br⁻
(I must use HQ because the Brainly Editor thinks the O makes a forbidden word)
2. Mechanism
HQ⁻ + CH₃-Br ⟶[HQ···CH₃···Br]⁻⟶ HQ-CH₃ + Br⁻
A C B
The hydroxide ion attacks the back side of the carbon atom in the bromomethane (A).
At the same time as the Q-H bond starts to form, the C-Br bond starts to break.
At the half-way point, we have a high-energy intermediate (C) with partially formed C-O and C-Br bonds.
As the reaction proceeds further, the Br atom drops off to form the products — methanol and bromide ion (B).
3. Energy diagram
See the diagram below.
Answer:
All the members of a group of elements have the same number of valence electrons and similar chemical properties.
Explanation:
The vertical columns on the periodic table are called groups or families because of their similar chemical behavior.
Answer: The final pressure will decrease ad the value is 85 kPa
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final pressure will decrease ad the value is 85 kPa
Answer:
19.12 L
Explanation:
At STP(i.e. Standard temperature and pressure).
The volume occupied by one mole of gas = 22.4 L
The pressure = 1 atm
The temperature = 273 K
Thus, since 1 mole of gas = 22.4 L;
Then 0.853 moles of N2 gas will occupy:
= (0.853 moles of N2 gas × 22.4 L)/ 1 mole of N2 gas
= 19.12 L