Answer:
The probability that a randomly selected call time will be less than 30 seconds is 0.7443.
Step-by-step explanation:
We are given that the caller times at a customer service center has an exponential distribution with an average of 22 seconds.
Let X = caller times at a customer service center
The probability distribution (pdf) of the exponential distribution is given by;

Here,
= exponential parameter
Now, the mean of the exponential distribution is given by;
Mean =
So,
⇒
SO, X ~ Exp(
)
To find the given probability we will use cumulative distribution function (cdf) of the exponential distribution, i.e;
; x > 0
Now, the probability that a randomly selected call time will be less than 30 seconds is given by = P(X < 30 seconds)
P(X < 30) =
= 1 - 0.2557
= 0.7443
Answer:
i would say that the rocket was in the air for 8 seconds and the highest it went in the air was 48
Step-by-step explanation:
It is equivalent too 5.3 and 5.30
Answer:
<h2>5/16</h2>
Step-by-step explanation:
Multiply 1/8 by 2.5
1/8 x 2.5 = 5/16
Ryan will have completed 5/16 of his test at the 1 hour mark.
I'm always happy to help :)
First find the gradient of the line
Change in y/change in x
-3–3/-3-3
0/-6
=0 ( so the gradient m is equal to zero)
Y=0x+c
Input the coordinates of one point to find c
-3=(0*3)+c
-3=c
So the equation is
Y= -3