1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetradugi [14.3K]
3 years ago
7

Please help

Mathematics
1 answer:
storchak [24]3 years ago
3 0

Answer:

7 large boxes and two small boxes

Step-by-step explanation:

7x350=2450

2x50=100

2450+100=2550

7-5=2

You might be interested in
The objects have all the following properties in common except​
Nataly_w [17]
The correct answer is H.
4 0
3 years ago
Solve for x.<br> 10 = x + 5 + x<br><br> A. 5<br> B. 10<br> C. 5/2 <br> D. no solution
Strike441 [17]
The answer is c
I love math btw
7 0
3 years ago
Change 4 5/7 and 7 into improper fractions
Elden [556K]
ANSWER:



4 5/7= 83/7



7= 7/1
4 0
3 years ago
Calculus 3 help please.​
Reptile [31]

I assume each path C is oriented positively/counterclockwise.

(a) Parameterize C by

\begin{cases} x(t) = 4\cos(t) \\ y(t) = 4\sin(t)\end{cases} \implies \begin{cases} x'(t) = -4\sin(t) \\ y'(t) = 4\cos(t) \end{cases}

with -\frac\pi2\le t\le\frac\pi2. Then the line element is

ds = \sqrt{x'(t)^2 + y'(t)^2} \, dt = \sqrt{16(\sin^2(t)+\cos^2(t))} \, dt = 4\,dt

and the integral reduces to

\displaystyle \int_C xy^4 \, ds = \int_{-\pi/2}^{\pi/2} (4\cos(t)) (4\sin(t))^4 (4\,dt) = 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt

The integrand is symmetric about t=0, so

\displaystyle 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \,dt

Substitute u=\sin(t) and du=\cos(t)\,dt. Then we get

\displaystyle 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^1 u^4 \, du = \frac{2^{13}}5 (1^5 - 0^5) = \boxed{\frac{8192}5}

(b) Parameterize C by

\begin{cases} x(t) = 2(1-t) + 5t = 3t - 2 \\ y(t) = 0(1-t) + 4t = 4t \end{cases} \implies \begin{cases} x'(t) = 3 \\ y'(t) = 4 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{3^2+4^2} \, dt = 5\,dt

and

\displaystyle \int_C x e^y \, ds = \int_0^1 (3t-2) e^{4t} (5\,dt) = 5 \int_0^1 (3t - 2) e^{4t} \, dt

Integrate by parts with

u = 3t-2 \implies du = 3\,dt \\\\ dv = e^{4t} \, dt \implies v = \frac14 e^{4t}

\displaystyle \int u\,dv = uv - \int v\,du

\implies \displaystyle 5 \int_0^1 (3t-2) e^{4t} \,dt = \frac54 (3t-2) e^{4t} \bigg|_{t=0}^{t=1} - \frac{15}4 \int_0^1 e^{4t} \,dt \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} e^{4t} \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} (e^4 - 1) = \boxed{\frac{5e^4 + 55}{16}}

(c) Parameterize C by

\begin{cases} x(t) = 3(1-t)+t = -2t+3 \\ y(t) = (1-t)+2t = t+1 \\ z(t) = 2(1-t)+5t = 3t+2 \end{cases} \implies \begin{cases} x'(t) = -2 \\ y'(t) = 1 \\ z'(t) = 3 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{(-2)^2 + 1^2 + 3^2} \, dt = \sqrt{14} \, dt

and

\displaystyle \int_C y^2 z \, ds = \int_0^1 (t+1)^2 (3t+2) \left(\sqrt{14}\,ds\right) \\\\ ~~~~~~~~ = \sqrt{14} \int_0^1 \left(3t^3 + 8t^2 + 7t + 2\right) \, dt \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 t^4 + \frac83 t^3 + \frac72 t^2 + 2t\right) \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 + \frac83 + \frac72 + 2\right) = \boxed{\frac{107\sqrt{14}}{12}}

8 0
1 year ago
Solve for m 1/C+1/m=1/z
9966 [12]
Answer:  " m = zC / (C − z) " .
___________________________________
Explanation:
_________________________
Given:  1/C + 1/m = 1/z ;  Solve for "m".

Subtract  "1/C" from each side of the equation:
____________________________________
1/C + 1/m − 1/C = 1/z − 1/C  ;

to get:  1/m = 1/z − 1/C ;
____________________________________
Now, multiply the ENTIRE EQUATION (both sides); by "(mzC"); to get ride of the fractions:
_________________

mzC {1/m = 1/z − 1/C} ;

to get:  zC = mC − mz ;

Factor out an "m" on the "right-hand side" of the equation:

zC = m(C − z) ;  Divide EACH side of the equation by "(C − z)" ; to isolate "m" on one side of the equation;

zC / (C − z) = m(C − z) / m ;  to get:   24/8 = 3  24

zC/ (C − z) = m ;   ↔   m = zC/ (C − z) .
___________________________________________________
4 0
3 years ago
Other questions:
  • Your cell phone plan costs $39.99 per month plus $0.11 for each text message you send or receive. You have at most $45 to spend
    15·1 answer
  • Help please with angles
    8·1 answer
  • What is the supplementary angle of 32
    8·2 answers
  • Solve the problem. if a roof has a pitch of 5 to 11, how high will the roof rise over a 33-foot run?
    6·1 answer
  • Bo is buying a board game which usually costs B dollars. The game is on sale, and the price has been reduced by 18% There are di
    8·1 answer
  • The inequality 6-2/3x&lt;-9 is equivalent to
    8·1 answer
  • 72 students have vanilla ice cream and 20 students have chocolate ice cream. What is the ratio of the number of students who hav
    8·2 answers
  • What is the value of cos Tan
    15·1 answer
  • Please help, I need this quickly. It's an easy trigonometric question.
    7·2 answers
  • In sequences 1,7,13,19, ...., each number is 6 more than the number before it. In the sequences 1,9,17,25,...., each number is 8
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!