Answer:
If m is nonnegative (ie not allowed to be negative), then the answer is m^3
If m is allowed to be negative, then the answer is either |m^3| or |m|^3
==============================
Explanation:
There are two ways to get this answer. The quickest is to simply divide the exponent 6 by 2 to get 6/2 = 3. This value of 3 is the final exponent over the base m. Why do we divide by 2? Because the square root is the same as having an exponent of 1/2 = 0.5, so
sqrt(m^6) = (m^6)^(1/2) = m^(6*1/2) = m^(6/2) = m^3
This assumes that m is nonnegative.
---------------------------
A slightly longer method is to break up the square root into factors of m^2 each and then apply the rule that sqrt(x^2) = x, where x is nonnegative
sqrt(m^6) = sqrt(m^2*m^2*m^2)
sqrt(m^6) = sqrt(m^2)*sqrt(m^2)*sqrt(m^2)
sqrt(m^6) = m*m*m
sqrt(m^6) = m^3
where m is nonnegative
------------------------------
If we allow m to be negative, then the final result would be either |m^3| or |m|^3.
The reason for the absolute value is to ensure that the expression m^3 is nonnegative. Keep in mind that m^6 is always nonnegative, so sqrt(m^6) is also always nonnegative. In order for sqrt(m^6) = m^3 to be true, the right side must be nonnegative.
Example: Let's say m = -2
m^6 = (-2)^6 = 64
sqrt(m^6) = sqrt(64) = 8
m^3 = (-2)^3 = -8
Without the absolute value, sqrt(m^6) = m^3 is false when m = -2
Answer:
0.756
Step-by-step explanation:
It is given that a machine has four components, A, B, C, and D.

If these components set up in such a manner that all four parts must work for the machine to work properly.
We need to find the probability that the machine works properly. It means we have to find the value of
.
If two events X and Y are independent, then

Assume the probability of one part working does not depend on the functionality of any of the other parts.

Substitute the given values.



Therefore, the probability that the machine works properly is 0.756.
Answer:

Step-by-step explanation:





The value of x is 82
Hope I helped!
Best regards! :D
~