Answer:
me either
Step-by-step explanation:
Answer:
The product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.
Step-by-step explanation:
The slope-intercept form of the line equation

where
Given the lines
y = 2/3 x -3 --- Line 1
y = -3/2x +2 --- Line 2
<u>The slope of line 1</u>
y = 2/3 x -3 --- Line 1
By comparing with the slope-intercept form of the line equation
The slope of line 1 is: m₁ = 2/3
<u>The slope of line 2</u>
y = -3/2x +2 --- Line 2
By comparing with the slope-intercept y = mx+b form of the line equation
The slope of line 2 is: m₂ = -3/2
We know that when two lines are perpendicular, the product of their slopes is -1.
Let us check the product of two slopes m₁ and m₂
m₁ × m₂ = (2/3)(-3/2
)
m₁ × m₂ = -1
Thus, the product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.
2w + 2l = 25
2 * 2 + 2l = 25
<em><u>Simplfiy.</u></em>
4 + 2l = 25
<em><u>Subtract 4 from both sides.</u></em>
2l = 21
<em><u>Divide both sides by 2.</u></em>
l = 10.5
Now that we have the value of l, we can find the area.
A = lw
A = 10.5 * 2
A = 21.
The length is 10.5cm.
The area of the rectangle is 21cm^2
Answer:
1899
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 3234
Standard deviation = 871
Percentage of newborns who weighed between 1492 grams and 4976 grams:
1492 = 3234 - 2*871
So 1492 is two standard deviations below the mean.
4976 = 3234 + 2*871
So 4976 is two standard deviations above the mean.
By the Empirical Rule, 95% of newborns weighed between 1492 grams and 4976 grams.
Out of 1999:
0.95*1999 = 1899
So the answer is 1899