Answer:
Rounding to nearest hundredths gives us r=0.06.
So r is about 6%.
Step-by-step explanation:
So we are given:

where


.


Divide both sides by 1600:

Simplify:

Take the 6th root of both sides:
![\sqrt[6]{\frac{23}{16}}=1+r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D%3D1%2Br)
Subtract 1 on both sides:
![\sqrt[6]{\frac{23}{16}}-1=r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1%3Dr)
So the exact solution is ![r=\sqrt[6]{\frac{23}{16}}-1](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1)
Most likely we are asked to round to a certain place value.
I'm going to put my value for r into my calculator.
r=0.062350864
Rounding to nearest hundredths gives us r=0.06.
Answer:
(A) - (5)
(B) - (4)
(C) - (1)
(D) - (2)
Step-by-step explanation:
(A) We are given the polynomial (x+4)(x−4)[x−(2−i)][x−(2+i)]
(5) The related polynomial equation has a total of four roots; two roots are complex and two roots are real.
(B) We are given the polynomial (x+i)(x−i)(x−2)³(x−4).
(4) The related polynomial equation has a total of six roots; two roots are complex and one of the remaining real roots has a multiplicity of 3.
(C) We are given the polynomial (x+3)(x−5)(x+2)²
(1) The related polynomial equation has a total of four roots; all four roots are real and one root has a multiplicity of 2.
(D) We are given the polynomial (x+2)²(x+1)²
(2) The related polynomial equation has a total four roots; all four roots are real and two roots have a multiplicity of 2. (Answer)
Answer: Jennas will nedd 351 inches of ribbon to make 9 bows
Step-by-step explanation:multiply 39 and 9