Answer:5
Step-by-step explanation:
To Find :
The equation of the quadratic whose Vertex is at ( −4,−5) and passes through the point (−3, −7).
Solution :
A quadratic equation in vertex form is given by :
( Here, h, k is the vertex )
y = a(x-(-4))² + (-5)
y = a(x+4)² - 5
Now, putting (-3,-7) in above equation:
-7 = a( -3 + 4 )² - 5
a(1)² = -2
a = -2
Therefore, the equation of the quadratic is y = -2(x+4)² - 5 .

Let's solve ~

![\qquad \sf \dashrightarrow \:[( 8 \sdot3) + (8 \sdot2i) + (5i \sdot3) + (5i \sdot2i)] -[( 4 \sdot4) + (4 \sdot - i) + (i \sdot4) + (i \sdot - i)]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B%28%208%20%5Csdot3%29%20%2B%20%288%20%5Csdot2i%29%20%2B%20%285i%20%5Csdot3%29%20%2B%20%285i%20%5Csdot2i%29%5D%20-%5B%28%204%20%5Csdot4%29%20%2B%20%284%20%5Csdot%20-%20i%29%20%2B%20%28i%20%5Csdot4%29%20%2B%20%28i%20%5Csdot%20-%20i%29%5D)
![\qquad \sf \dashrightarrow \:[24+ 16i + 15i+ 10i {}^{2} ] -[16 - 4 i+ 4i - i {}^{2} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B24%2B%2016i%20%2B%2015i%2B%2010i%20%7B%7D%5E%7B2%7D%20%5D%20-%5B16%20-%204%20i%2B%204i%20-%20i%20%7B%7D%5E%7B2%7D%20%5D)
![\qquad \sf \dashrightarrow \:[24+ 31i+ 10 {}{( - 1)} ] -[16 - ( - 1){}^{} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B24%2B%2031i%2B%2010%20%7B%7D%7B%28%20-%201%29%7D%20%5D%20-%5B16%20-%20%28%20-%201%29%7B%7D%5E%7B%7D%20%5D)
![\qquad \sf \dashrightarrow \:[24+ 31i - 10 {}{} ] -[16 + 1{}^{} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B24%2B%2031i%20-%2010%20%7B%7D%7B%7D%20%5D%20-%5B16%20%20%2B%201%7B%7D%5E%7B%7D%20%5D)
![\qquad \sf \dashrightarrow \:[14+ 31i {}{} ] -[17{}^{} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B14%2B%2031i%20%7B%7D%7B%7D%20%5D%20-%5B17%7B%7D%5E%7B%7D%20%5D)

I hope you understood the procedure ~
Answer:
P=0.125
If it is repeated 10,000, it is expected "3 tails in a row" about 1,250 times.
Step-by-step explanation:
When flipping a coin a number of times, we can modeled this as a random variable with a binomial distribution.
In this case, we have to calculate the probability of 3 consecutive tails. If we define p as the probability of getting a tail (which has a value of p=0.5 if it is an unbiased coin), the probability of getting 3 tails in a row is:

If that event of "flipping a coin 3 times" is repeated 10,000 times, we can expect to have 3 tails in a row about 1,250 times:

because we expect 0.125 events of this type for every try, so we can multiply this probability (or expected frequency) by the number of trials and we get the expected number of events described.
Answer:
12
Step-by-step explanation:
4 centimeters for each present and she used 48 centimeters of tape, so u would take 48 divided by 4 and get 12