There are 7 oranges. You don't need to add the 5 to it because the 5 is apples.
Answer:
definatly not infinitely it should be only one correct answer so false
Step-by-step explanation:
Step-by-step explanation:
The Taylor series expansion is:
Tₙ(x) = ∑ f⁽ⁿ⁾(a) (x − a)ⁿ / n!
f(x) = 1/x, a = 4, and n = 3.
First, find the derivatives.
f⁽⁰⁾(4) = 1/4
f⁽¹⁾(4) = -1/(4)² = -1/16
f⁽²⁾(4) = 2/(4)³ = 1/32
f⁽³⁾(4) = -6/(4)⁴ = -3/128
Therefore:
T₃(x) = 1/4 (x − 4)⁰ / 0! − 1/16 (x − 4)¹ / 1! + 1/32 (x − 4)² / 2! − 3/128 (x − 4)³ / 3!
T₃(x) = 1/4 − 1/16 (x − 4) + 1/64 (x − 4)² − 1/256 (x − 4)³
f(x) = 1/x has a vertical asymptote at x=0 and a horizontal asymptote at y=0. So we can eliminate the top left option. That leaves the other three options, where f(x) is the blue line.
Now we have to determine which green line is T₃(x). The simplest way is to notice that f(x) and T₃(x) intersect at x=4 (which makes sense, since T₃(x) is the Taylor series centered at x=4).
The bottom right graph is the only correct option.
N + n/4 + 3 = 193
5n/4 = 190
n = 152
At 8 pages per day it will take 152 pages/ 8 pages/day = 19 days
Answer: y = 32,000(1.08)^c
Step-by-step explanation:
Given that the initial population
P = 32000
t = 1 year
R = 8%
Y = 34,560
To predict y the number of people living in town after x years
t = x
Y = P(1 + 8%)^t
Y = 32000( 1.08)^x