The answer is B.
Read the answer I posted for your other question on the factorial of 7.
Note: The matrix referred to in the question is: ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
Answer:
a) [5/18, 5/18, 4/9]'
Explanation:
The adjacency matrix is ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
To start the power iteration, let us start with an initial non zero approximation,
![X_o = \left[\begin{array}{ccc}1\\1\\1\end{array}\right]](https://tex.z-dn.net/?f=X_o%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
To get the rank vector for the first Iteration:

![X_1 = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]\left[\begin{array}{ccc}1\\1\\1\end{array}\right] \\\\X_1 = \left[\begin{array}{ccc}5/6\\5/6\\4/3\end{array}\right]\\](https://tex.z-dn.net/?f=X_1%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5CX_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F6%5C%5C5%2F6%5C%5C4%2F3%5Cend%7Barray%7D%5Cright%5D%5C%5C)
Multiplying the above matrix by 1/3
![X_1 = \left[\begin{array}{ccc}5/18\\5/18\\4/9\end{array}\right]](https://tex.z-dn.net/?f=X_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F18%5C%5C5%2F18%5C%5C4%2F9%5Cend%7Barray%7D%5Cright%5D)
A place to watch daisy Taylor vids
Here is a somewhat cryptic solution that works:
#include <algorithm>
#include <cstdlib>
using namespace std;
void q(char c, int count)
{
for (int i = 0; i < count; i++) {
putchar(c);
}
}
void p(int b1, int plusses)
{
q(' ', b1);
q('+', plusses);
}
int main()
{
for (int i = -3; i <= 3; i++)
{
int pl = min(6, (3 - abs(i)) * 2 + 1);
p(6-pl, pl);
i == 0 ? p(0, 6) : p(6, 0);
p(0, pl);
putchar('\n');
}
getchar();
}
Answer:
Explanation:
Transitive dependency
In this case, we have three fields, where field 2 depends on field 1, and field three depends on field 2.
For example:
Date of birth --> age --> vote
Partial dependency
It is a partial functional dependency if the removal of any attribute Y from X, and the dependency always is valid
For example:
Course and student these tables have a partial dependency, but if we have the field registration date, this date will depend on the course and student completely, we must create another table with the field registration date to remove this complete dependency.
If we remove or update the table registration date, neither course nor student must not change.