1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
2 years ago
12

Write an equation in point-slope form of the line that passes through the two given points. Use the first point to write the equ

ation. (4,7) and (5, 1)​
Mathematics
1 answer:
a_sh-v [17]2 years ago
5 0
Answer:
(-1,6)
Explanation:
use (y1-y2), (x1-x2)
You might be interested in
Use distributing property : (-11) x (-15) + (-11) x (-25) plzz answer fast
Semmy [17]
The answer is 440.
What I do is just take the -11 and -15 out of the parentheses so it is -11*-15 and the answer is 165. Then, you take -11 and -25 out of the parentheses and find the answer.
Add them together.
Hope that helped :)
5 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Sorry, but I also need help on this
gladu [14]

Answer:

It B ok

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Find the sine of both angle A and angle B.
olchik [2.2K]
Sin = opposite/hyp

Sin A = 10/26   = 5/13

Sin b = 24/26 = 12/13

The answer is option A

Hope this helps



6 0
3 years ago
Read 2 more answers
F(0)=1(0+3)squared + 1<br><br> Find f of zero.<br><br> What does this point represent?
zzz [600]

Answer:

10

Step-by-step explanation:

F(0) = 3^2+1=9+1=10

6 0
2 years ago
Other questions:
  • An elliptical cylinder is sliced by a plane, as shown in the figure. Among the four given two-dimensional shapes, shape
    8·2 answers
  • Ecuación 2:<br> 10x + 20y = 8000<br> ayudaaa
    13·1 answer
  • Choose the explanation that shows why ΔADE is similar to ΔABC.
    6·2 answers
  • When you convert 100 feet per second to inches per second will there be more or less than 100 inches?
    15·1 answer
  • Please helppp
    11·1 answer
  • Drag and drop numbers into the boxes so that the paired values are in a proportional relationship
    5·1 answer
  • Find the equation of the linear relationship
    15·2 answers
  • The area of a rectangle is 40 square inches. The
    12·1 answer
  • An expert diver is looking for a particular species of fish along the coast line. He dives 30 feet below the surface of the ocea
    7·1 answer
  • A rectangular prsim has a volume of 144 cubic yards. The height of the prism is 12 yards, and the width of the prism is 2 yards.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!