is the maclaurin polynomial and estimate value of
is 1.14. This can be obtained by using the formula to find the maclaurin polynomial.
<h3>Find the third order maclaurin polynomial:</h3>
Given the polynomial,

The formula to find the maclaurin polynomial,

Next we have to find f'(x), f''(x) and f'''(x),
By putting x = 0 , we get,
Therefore the maclaurin polynomial by using the formula will be,

To find the value of
we can use the maclaurin polynomial,
is
with x = 1/10,


Hence
is the maclaurin polynomial and estimate value of
is 1.14.
Learn more about maclaurin polynomial here:
brainly.com/question/24188694
#SPJ1
Given :-
- The general term of a sequence is given by aₙ=43-3(n-1) .
To Find :-
- The first four terms of the sequence.
Solution :-
The given expression is 
→ aₙ=43-3(n-1)
where n > 0
<u>Finding</u><u> the</u><u> </u><u>first </u><u>term </u><u>:</u>
Substituting n = 1 , we have ,
→ T1 = 43 - 3(1-1)
→ T1 = 43 - 3*0
→ T1 = 43 - 0 = 43
<u>Finding</u><u> the</u><u> </u><u>second</u><u> </u><u>term </u><u>:</u>
Substituting n = 2 , we have,
→ T2 = 43 -3(2-1)
→ T2 = 43 -3*1
→ T2 = 43 -3 = 40
<u>Finding</u><u> </u><u>the </u><u>third </u><u>term</u><u> </u><u>:</u>
Substituting n = 3 , we have,
→ T3 = 43 -3(3-1)
→ T3 = 43 -3*2
→ T3 = 43 -6 = 37
<u>Finding</u><u> the</u><u> </u><u>fourth</u><u> </u><u>term </u><u>:</u>
→ T4 = 43 -3(4-1)
→ T4 = 43 -3*3
→ T4 = 43-9 = 34
<u>Hence</u><u> the</u><u> </u><u>first</u><u> </u><u>four</u><u> terms</u><u> of</u><u> </u><u>the</u><u> </u><u>sequence</u><u> </u><u>are </u><u>4</u><u>3</u><u> </u><u>,</u><u> </u><u>4</u><u>0</u><u> </u><u>,</u><u> </u><u>37</u><u> </u><u>and </u><u>34</u><u> </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em><em> </em><em>Let </em><em>me</em><em> know</em><em> if</em><em> you</em><em> </em><em>need </em><em>further</em><em> </em><em>clarification</em><em> </em><em>.</em>
Answer: The answer is 2x + 7.
Explanation: First, we need to add the numbers:
9x + 3 – 7x + 4
9x + 7 - 7x
And finally, we combine like terms:
9x + 7 - 7x
2x + 7
The First One
The Third One
The Forth One
The others result in a lower number than what they are supposed to be. The 3 correct ones end with the exact number of the equations solution number.